Calculus of Variations Ergodic mean field games with Hörmander diffusions

@inproceedings{Dragoni2018CalculusOV,
  title={Calculus of Variations Ergodic mean field games with H{\"o}rmander diffusions},
  author={Federica Dragoni and Ermal Feleqi},
  year={2018}
}
We prove existence of solutions for a class of systems of subelliptic PDEs arising from mean field game systems with Hörmander diffusion. These results are motivated by the feedback synthesis mean field game solutions and the nash equilibria of a large class of N -player differential games. Mathematics Subject Classification 35R03 · 49L99 · 49J10 

Topics from this paper.

References

Publications referenced by this paper.
SHOWING 1-10 OF 60 REFERENCES

Mean field games

Lasry, J.-M., Lions, P.-L.
  • Jpn. J. Math. 2(1), 229–260
  • 2007
VIEW 6 EXCERPTS
HIGHLY INFLUENTIAL

Jeux à champmoyen

Lasry, J.-M., Lions, P.-L.
  • I. Le cas stationnaire. C. R.Math. Acad. Sci. Paris 343(9), 619–625
  • 2006
VIEW 6 EXCERPTS
HIGHLY INFLUENTIAL

Cirant, M.:Mean field gamesmodels of segregation.Math.ModelsMethods

Y. Achdou, M. Bardi
  • Appl. Sci. 27(01),
  • 2017
VIEW 1 EXCERPT

A long-term mathematical model for mining industries

Y. Achdou, Giraud, +4 authors P.-L.
  • Appl. Math. Optim. 74(3), 579–618
  • 2016

Similar Papers

Loading similar papers…