Calcium signalling in granule neurones studied in cerebellar slices.

Abstract

The cytoplasmic free calcium concentration ([Ca2+]i) was studied in Fura-2/AM loaded granule neurones in acutely prepared cerebellar slices isolated from neonatal (6 days old) and adult (30 days old) mice. Bath application of elevated (10-50 mM) KCl-containing extracellular solutions evoked [Ca2+]i rise which was dependent on extracellular Ca2+. The K(+)-induced [Ca2+]i elevation was inhibited to different extends by verapamil, nickel and omega-conotoxin suggesting the coexpression of different subtypes of plasmalemmal voltage-gated Ca2+ channels. Bath application of caffeine (10-40 mM) elevated [Ca2+]i by release of Ca2+ from intracellular stores. Caffeine-induced [Ca2+]i elevation was inhibited by 100 microM ryanodine and 500 nM thapsigargin. Depletion of internal Ca2+ stores by caffeine, or blockade of Ca2+ release channels by ryanodine, did not affect depolarization-induced [Ca2+]i transients, suggesting negligible involvement of Ca(2+)-induced Ca2+ release in [Ca2+]i signal generation following cell depolarization. External application of 100 microM glutamate, but not acetylcholine (1-100 microM), carbachol (10-100 microM) or (1S,3R)-ACPD (100-500 microM) evoked [Ca2+]i elevation. Part of glutamate-triggered [Ca2+]i transients in neurones from neonatal mice was due to Ca2+ release (presumably via inositol-(1,4,5)-trisphosphate-sensitive mechanisms) from internal Ca2+ stores. In adult animals, glutamate-triggered [Ca2+]i elevation was exclusively associated with plasmalemmal Ca2+ influx via both voltage-gated and glutamate-gated channels.

Cite this paper

@article{Kirischuk1996CalciumSI, title={Calcium signalling in granule neurones studied in cerebellar slices.}, author={Sergei Kirischuk and Nana V. Voitenko and Platon Grigor’evich Kostyuk and Alexei Verkhratsky}, journal={Cell calcium}, year={1996}, volume={19 1}, pages={59-71} }