Caffarelli – Kohn – Nirenberg inequalities with remainder terms $

@inproceedings{Wanga2002CaffarelliK,
  title={Caffarelli – Kohn – Nirenberg inequalities with remainder terms \$},
  author={Zhi-Qiang Wanga and Michel Willemb},
  year={2002}
}
  • Zhi-Qiang Wanga, Michel Willemb
  • Published 2002

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 13 references

Blow-up solutions of some nonlinear elliptic problems

  • H. Brezis, J. Vazquez
  • Rev. Mat. Univ. Comput. Madrid 10
  • 1997
Highly Influential
7 Excerpts

Inequalities with remainder terms

  • H. Brezis, E. Lieb
  • J. Funct. Anal. 62
  • 1985
Highly Influential
6 Excerpts

The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse square potential

  • J. Vazquez, E. Zuazua
  • J. Funct. Anal. 173
  • 2000
Highly Influential
4 Excerpts

A note on the Sobolev inequality

  • G. Bianchi, H. Egnell
  • J. Funct. Anal. 100
  • 1991
Highly Influential
4 Excerpts

An improved Hardy–Sobolev inequality and its applications

  • Adimurthi N. Chaudhuri, M. Ramaswamy
  • Proc. Amer. Math. Soc
  • 2002
1 Excerpt

Hardy–Sobolev inequalities with remainder terms

  • V. Rădulescu, D. Smets, M. Willem
  • Topol. Meth. Nonlinear Anal. 20
  • 2002
2 Excerpts

Existence versus explosion instantanée pour des équations de la chaleur linéaires avec des potentiels singuliers

  • X. Cabre, Y. Martel
  • C. R. Acad. Sci. Paris 329
  • 1999
1 Excerpt

On the best constant for a weighted Sobolev–Hardy inequality

  • K. S. Chou, W. S. Chu
  • J. London Math. Soc. 48
  • 1993
1 Excerpt

Similar Papers

Loading similar papers…