Cache coherence for GPU architectures

Abstract

While scalable coherence has been extensively studied in the context of general purpose chip multiprocessors (CMPs), GPU architectures present a new set of challenges. Introducing conventional directory protocols adds unnecessary coherence traffic overhead to existing GPU applications. Moreover, these protocols increase the verification complexity of the GPU memory system. Recent research, Library Cache Coherence (LCC) [34, 54], explored the use of time-based approaches in CMP coherence protocols. This paper describes a time-based coherence framework for GPUs, called Temporal Coherence (TC), that exploits globally synchronized counters in single-chip systems to develop a streamlined GPU coherence protocol. Synchronized counters enable all coherence transitions, such as invalidation of cache blocks, to happen synchronously, eliminating all coherence traffic and protocol races. We present an implementation of TC, called TC-Weak, which eliminates LCC's trade-off between stalling stores and increasing L1 miss rates to improve performance and reduce interconnect traffic. By providing coherent L1 caches, TC-Weak improves the performance of GPU applications with inter-workgroup communication by 85% over disabling the non-coherent L1 caches in the baseline GPU. We also find that write-through protocols outperform a writeback protocol on a GPU as the latter suffers from increased traffic due to unnecessary refills of write-once data.

DOI: 10.1109/HPCA.2013.6522351

Extracted Key Phrases

16 Figures and Tables

Showing 1-10 of 62 references

CUDA C Programming Guide v4

  • Nvidia Corp
  • 2012
Highly Influential
7 Excerpts

AMD. AMD Accelerated Parallel Processing OpenCL Programming Guide

  • 2012
Highly Influential
14 Excerpts

Temporal Coherence: Hardware Cache Coherence for GPU Architectures

  • I Singh
  • 2013

Intel. Intel 64 and IA-32 Architectures Software Developers Manual

  • 2012

NVIDIA's Next Generation CUDA Compute Architecture: Kepler GK110

  • Nvidia
  • 2012
1 Excerpt
Showing 1-10 of 52 extracted citations
0204060201220132014201520162017
Citations per Year

124 Citations

Semantic Scholar estimates that this publication has received between 70 and 212 citations based on the available data.

See our FAQ for additional information.