CANONICAL FORMS AND SOLVABLE SINGULAR SYSTEMS OF DIFFERENTIAL EQUATIONS
@article{Campbell1983CANONICALFA, title={CANONICAL FORMS AND SOLVABLE SINGULAR SYSTEMS OF DIFFERENTIAL EQUATIONS}, author={Stephen L. Campbell and Linda R. Petzold}, journal={Siam Journal on Algebraic and Discrete Methods}, year={1983}, volume={4}, pages={517-521} }
In this paper we investigate the relationship between solvability and the existence of canonical forms for the linear system of differential equations $E ( t ) x' ( t ) + F ( t ) x ( t ) = f ( t )$. We show that if E, F are analytic on the interval $[ 0 \,\, T ]$, then the differential equation is solvable if and only if it can be put into a certain canonical form. We give examples to show that this is not true if E, F are only differentiable.
110 Citations
An algorithm for the reduction of linear DAE
- MathematicsISSAC '95
- 1995
This work studies linear Differential Algebraic Equations, DAE, with time varying coefficients, and proposes a new generalization of the global index and a definition for the singularities of the initial system.
Systems of singular differential equations with pulse action
- Mathematics
- 2013
The paper deals with the singular systems of ordinary differential equations with impulsive action under the assumption that the considered systems can be reduced into the central canonical form. An…
Characterization of Classes of Singular Linear Differential-Algebraic Equations
- Mathematics
- 2005
We study linear, possibly over- or under-determined, differentialalgebraic
equations that have the same solution behavior as linear
differential-algebraic equations with well-dened strangeness…
CLASSICAL AND GENERALIZED SOLUTIONS OF TIME-DEPENDENT LINEAR DIFFERENTIAL-ALGEBRAIC EQUATIONS
- Mathematics
- 1996
Canonical forms for linear differential-algebraic equations with variable coefficients
- Mathematics
- 1994
ODE METHODS FOR THE SOLUTION OF DIFFERENTIAL/ALGEBRAIC SYSTEMS
- Computer Science, Mathematics
- 1984
A reduction technique is described which allows systems to be reduced to ones that can be solved and provides a tool for the analytical study of the structure of systems.
On stability of time-varying linear differential-algebraic equations
- MathematicsInt. J. Control
- 2013
A stability theory for time-varying linear differential algebraic equations (DAEs) is developed, and Lyapunov’s direct method is derived as well as the converse of the stability theorems.
Invariants, Canonical Forms, and Minimal Realizations for Singular Linear Multivariable Systems
- Mathematics, Computer Science
- 1987
Bifurcation of solutions of singular Fredholm boundary value problems
- Mathematics
- 2011
We obtain conditions for the bifurcation of solutions of linear singular Fredholm boundary value problems with a small parameter under the assumption that the unperturbed singular differential system…
References
SHOWING 1-10 OF 14 REFERENCES
On Singular Implicit Linear Dynamical Systems
- Mathematics
- 1982
We investigate properties of existence, unicity, representation, of the (causal) solutions of implicit linear systems (or “generalized systems”) when the underlying matrix pencil is singular. We…
Differential/Algebraic Equations are not ODE's
- Computer Science
- 1982
A number of difficulties which can arise when numerical methods are used to solve systems of differential/algebraic equations of the form ${\bf F(t, t, y, y') = {\bf 0}$.
One canonical form for higher-index linear time-varying singular systems
- Mathematics
- 1983
One form of the singular systemAx′+Bx=f is considered. The analytic solution, perturbation, and numerical solution of this form are examined. A class of systems which may be transformed into this…
Inversion of multivariable linear systems
- Mathematics
- 1969
A new algorithm for constructing an inverse of a multivariable linear dynamical system is presented. This algorithm, which is considerably more efficient than previous methods, also incorporates a…
A Method of Global Blockdiagonalization for Matrix-Valued Functions
- Mathematics
- 1978
Let $A(x)$ be an $n \times n$ analytic matrix function of the vector variable x. Let the eigenvalues of $A(x)$ belong to two disjoint sets for every fixed x. Then there exists an invertible analytic…
Relative inverses of meromorphic operator functions and associated holomorphic projection functions
- Mathematics
- 1975
Differential equations are not ODE's
- SIAM J. Sci. Stat. Comp
- 1982
Differential systems and matrix pencils
- Proc. Conference on Matrix Pencils
- 1982