# C-Ideals of Lie Algebras

@article{Towers2008CIdealsOL, title={C-Ideals of Lie Algebras}, author={David A. Towers}, journal={Communications in Algebra}, year={2008}, volume={37}, pages={4366 - 4373} }

A subalgebra B of a Lie algebra L is called a c-ideal of L if there is an ideal C of L such that L = B + C and B ∩ C ≤ B L , where B L is the largest ideal of L contained in B. This is analogous to the concept of c-normal subgroup, which has been studied by a number of authors. We obtain some properties of c-ideals and use them to give some characterisations of solvable and supersolvable Lie algebras. We also classify those Lie algebras in which every one-dimensional subalgebra is a c-ideal.

## 22 Citations

Weak c-ideals of a Lie algebra

- MathematicsTURKISH JOURNAL OF MATHEMATICS
- 2021

A subalgebra B of a Lie algebra L is called a weak c-ideal of L if there is a subideal C of L such that L = B+C and B∩C ≤ BL where BL is the largest ideal of L contained in B. This is analogous to…

Weak c-ideals of Lie algebras

- Mathematics
- 2020

A subalgebra B of a Lie algebra L is called a weak c-ideal of L if there is a subideal C of L such that L = B+C and B\cap C \subseteq B_L where B_L is the largest ideal of L contained in B. This is…

The index complex of a maximal subalgebra of a Lie algebra

- MathematicsProceedings of the Edinburgh Mathematical Society
- 2011

Abstract Let M be a maximal subalgebra of the Lie algebra L. A subalgebra C of L is said to be a completion for M if C is not contained in M but every proper subalgebra of C that is an ideal of L is…

c-supplemented Subalgebras of a Lie Superalgebra

- Mathematics
- 2011

A subalgebra B of a Lie superalgebra L is called a c-supplemented of L if there is an ideal C of T such that L = B+C and B ∩C ⊆ BL ,w hereBL is the largest ideal of L contained in B. We develop…

On theta pair for a proper subalgebra

- MathematicsTurkish Journal of Mathematics
- 2013

For a proper subalgebra K of a finite dimensional Lie algebra L, a pair (A,B) of subalgebras of L is called a q-pair if L = \langle A,K\rangle, B is the largest ideal of L contained in A\cap K and…

SCAP-subalgebras of Lie algebras

- Mathematics
- 2016

A subalgebra H of a finite dimensional Lie algebra L is said to be a SCAP-subalgebra if there is a chief series 0 = L0 ⊂ L1 ⊂... ⊂ Lt = L of L such that for every i = 1, 2,..., t, we have H + Li = H…

On the theta completions for maximal subalgebras

- Mathematics
- 2017

ABSTRACT Let L be a finite dimensional Lie algebra. Then for a maximal subalgebra M of L, a 𝜃-completion for M is a subalgebra C of L such that CM and ML⊆C and C∕ML contains no non-zero ideal of…

On n-maximal subalgebras of Lie algebras

- Mathematics
- 2015

. A 2-maximal subalgebra of a Lie algebra L is a maximal subalgebra of a maximal subalgebra of L . Similarly we can deﬁne 3-maximal subalge- bras, and so on. There are many interesting results…

Supplements to Maximal Subalgebras of Lie Algebras

- Mathematics
- 2010

For a Lie algebra L and a subalgebra M of L we say that a subalgebra U of L is a supplement to M in L if L = M + U. We investigate those Lie algebras all of whose maximal subalgebras have abelian…

On CAP*-subalgebras of Lie Algebras

- Mathematics
- 2016

A subalgebra H of a Lie algebra L is said a CAP*-subalgebra if, for any non-Frattini chief factor A/B of L, we have H + A = H + B or H ∩ A = H ∩ B. In this article, using this concept, we give some…

## References

SHOWING 1-10 OF 19 REFERENCES

On the cohomology of soluble Lie algebras

- Mathematics
- 1967

The cohomology theory of Lie algebras has been developed mainly as an example of general homological algebra. Little use has been made of this theory for the proof of structure theorems. The…

Abstract Lie Algebras

- Mathematics
- 1972

One purpose of this book is to give a solid but compact account of the theory of Lie algebras over fields of characteristic 0, with emphasis on the basic simplicity of the theory and on new…

The Influence of Minimal Subgroups on the Structure of Finite Groups 1

- Mathematics
- 2010

Let G be a finite group and F be a class of groups. A subgroup H of G is said to be F-supplemented in G if there exists a subgroup T of G such that G = THand (H ∩T)HG/HG is contained in the…

The classification of (J, σ)-irreducible monoids of type A 4

- Mathematics
- 1998

In this paper we develop a very basic method to classify (J, σ)-irreducible monoids of type A 4. As a typical example, we list all the types for the monoids corresponding to the strongly dominant…

A note on c-normal subgroups of finite groups

- Mathematics
- 2010

A subgroup H is called c-normal in group G if there exists a normal subgroup N of G such that HN = G and H \ N Core(H) . In this paper we study c-normal subgroups in some classes of finite groups.

A note on \(c\)-normal subgroups of finite groups

- Mathematics
- 2005

Let \(G\) be a finite group. We fix in every non-cyclic Sylow subgroup \(P\) of \(G\) some its subgroup \(D\) satisfying \(1<|D|<|P|\) and study the structure of \(G\) under assumption that all…

ON c-NORMAL MAXIMAL AND MINIMAL SUBGROUPS OF SYLOW SUBGROUPS OF FINITE GROUPS

- Mathematics
- 2001

A subgroup H is called c-normal in G if there exists a normal subgroup N of G such that HN = G and H ∩ N ≤ HG = CoreG(H). The purpose of this paper is to generalize some results obtained by some…

The influence of minimal subgroups on the structure of a finite group

- Mathematics
- 2002

Abstract Let G be a finite group. The question how the properties of its minimal subgroups influence the structure of G is of considerable interest for some scholars. In this paper we try to use…