Built-up systems of fundamental sequences and hierarchies of number-theoretic functions

  title={Built-up systems of fundamental sequences and hierarchies of number-theoretic functions},
  author={Diana Schmidt},
  journal={Arch. Math. Log.},
In [2], L6b and Wainer introduced a general procedure for generating hierarchies which can be used for classifying a wide variety of classes of number-theoretic functions. Similar hierarchies were also studied by Robbin [3], Rose [4] and Schwichtenberg [5]. The basic ingredient in all these cases was a transfinite sequence (F~)~ A of number-theoretic functions, indexed by an initial segment A of the second number class and defined inductively as follows: F0 = some strictly monotonic function; F… CONTINUE READING

From This Paper

Topics from this paper.
10 Citations
4 References
Similar Papers


Publications referenced by this paper.
Showing 1-4 of 4 references

~"-arithmetic and transfinite induction

  • H. E. Rose
  • J. Symbolic Logic 37,
  • 1972

Eine Klassifikation der eo-rekursiven Funktionen

  • H. Schwichtenberg
  • Zeitschr. math. Logik 17,
  • 1971

Hierarchies of number-theoretic functions

  • M. H. Lrb, S. S. Wainer
  • Arch. math. Logik
  • 1970

Similar Papers

Loading similar papers…