Brook for GPUs: stream computing on graphics hardware

Abstract

In this paper, we present Brook for GPUs, a system for general-purpose computation on programmable graphics hardware. Brook extends C to include simple data-parallel constructs, enabling the use of the GPU as a streaming co-processor. We present a compiler and runtime system that abstracts and virtualizes many aspects of graphics hardware. In addition, we present an analysis of the effectiveness of the GPU as a compute engine compared to the CPU, to determine when the GPU can outperform the CPU for a particular algorithm. We evaluate our system with five applications, the SAXPY and SGEMV BLAS operators, image segmentation, FFT, and ray tracing. For these applications, we demonstrate that our Brook implementations perform comparably to hand-written GPU code and up to seven times faster than their CPU counterparts.

DOI: 10.1145/1186562.1015800

Extracted Key Phrases

5 Figures and Tables

050100150'04'05'06'07'08'09'10'11'12'13'14'15'16'17
Citations per Year

1,300 Citations

Semantic Scholar estimates that this publication has 1,300 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Buck2004BrookFG, title={Brook for GPUs: stream computing on graphics hardware}, author={Ian Buck and Tim Foley and Daniel Reiter Horn and Jeremy Sugerman and Kayvon Fatahalian and Mike Houston and Pat Hanrahan}, journal={ACM Trans. Graph.}, year={2004}, volume={23}, pages={777-786} }