Brieskorn Manifolds, Positive Sasakian Geometry, and Contact Topology
@article{Boyer2015BrieskornMP, title={Brieskorn Manifolds, Positive Sasakian Geometry, and Contact Topology}, author={Charles P. Boyer and Leonardo Macarini and Otto van Koert}, journal={arXiv: Differential Geometry}, year={2015} }
Using $S^1$-equivariant symplectic homology, in particular its mean Euler characteristic, of the natural filling of links of Brieskorn-Pham polynomials, we prove the existence of infinitely many inequivalent contact structures on various manifolds, including in dimension 5 the k-fold connected sums of $S^2\times S^3$ and certain rational homology spheres. We then apply our result to show that on these manifolds the moduli space of classes of positive Sasakian structures has infinitely many…
8 Citations
Are Simply Connected Reducible Sasaki Manifolds always a Join ?
- Mathematics
- 2018
The purpose of this paper is to study reducibility properties in Sasakian geometry. First we give the Sasaki version of the de Rham Decomposition Theorem; however, we need a mild technical assumption…
Contact Structures of Sasaki Type and Their Associated Moduli
- MathematicsComplex Manifolds
- 2019
Abstract This article is based on a talk at the RIEMain in Contact conference in Cagliari, Italy in honor of the 78th birthday of David Blair one of the founders of modern Riemannian contact…
Ricci Curvature, Reeb Flows and Contact 3-Manifolds
- MathematicsThe Journal of Geometric Analysis
- 2021
Given a contact 3-manifold we consider the problem of when a given function can be realized as the Ricci curvature of a Reeb vector field for the contact structure. We will use topological tools to…
Infinitely many families of Sasaki-Einstein metrics on spheres
- Mathematics
- 2022
We show that there exist infinitely many families of Sasaki-Einstein metrics on every odd-dimensional standard sphere of dimension at least 5. We also show that the same result is true for all…
Sasaki structures distinguished by their basic Hodge numbers
- MathematicsBulletin of the London Mathematical Society
- 2022
In all odd dimensions ≥ 5 we produce examples of manifolds admitting pairs of Sasaki structures with different basic Hodge numbers. In dimension 5 we prove more precise results, for example we show…
Reducibility in Sasakian geometry
- MathematicsTransactions of the American Mathematical Society
- 2018
The purpose of this paper is to study reducibility properties in Sasakian geometry. First we give the Sasaki version of the de Rham decomposition theorem; however, we need a mild technical assumption…
Relative K-stability and Extremal Sasaki metrics
- Mathematics
- 2016
We define K-stability of a polarized Sasakian manifold relative to a maximal torus of automorphisms. The existence of a Sasaki-extremal metric in the polarization is shown to imply that the…
References
SHOWING 1-10 OF 53 REFERENCES
Symplectic homology of some Brieskorn manifolds
- Mathematics
- 2015
This paper consists of two parts. In the first part, we use symplectic homology to distinguish the contact structures on the Brieskorn manifolds $$\varSigma (2\ell ,2,2,2)$$Σ(2ℓ,2,2,2), which contact…
Brieskorn manifolds in contact topology
- Mathematics
- 2016
In this survey, we give an overview of Brieskorn manifolds and varieties, and their role in contact topology. We discuss open books, fillings and invariants such as contact and symplectic homology.…
Open books for contact five-manifolds and applications of contact homology
- Mathematics
- 2005
In the first half of this thesis, we use Giroux's construction of contact open books to construct contact structures on simply connected five-manifolds. This allows us to reprove a theorem of Geiges…
The Gysin exact sequence for $S^1$-equivariant symplectic homology
- Mathematics
- 2009
We define $S^1$-equivariant symplectic homology for symplectically aspherical manifolds with contact boundary, using a Floer-type construction first proposed by Viterbo. We show that it is related to…
Deformation of Sasakian metrics
- Mathematics
- 2008
Deformations of the Reeb flow of a Sasakian manifold as transversely K\"ahler flows may not admit compatible Sasakian metrics anymore. We show that the triviality of the (0,2)-component of the basic…
Sasaki–Einstein Manifolds and Volume Minimisation
- Mathematics
- 2008
We study a variational problem whose critical point determines the Reeb vector field for a Sasaki–Einstein manifold. This extends our previous work on Sasakian geometry by lifting the condition that…
Highly connected manifolds with positive Ricci curvature
- Mathematics
- 2006
We prove the existence of Sasakian metrics with positive Ricci curvature on certain highly connected odd dimensional manifolds. In particular, we show that manifolds homeomorphic to the 2k-fold…
The positive equivariant symplectic homology as an invariant for some contact manifolds
- Mathematics
- 2015
We show that positive $S^1$-equivariant symplectic homology is a contact invariant for a subclass of contact manifolds which are boundaries of Liouville domains. In nice cases, when the set of…
Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds
- Mathematics
- 2006
In this paper we study compact Sasaki manifolds in view of transverse K\"ahler geometry and extend some results in K\"ahler geometry to Sasaki manifolds. In particular we define integral invariants…
Obstructions to the Existence of Sasaki–Einstein Metrics
- Mathematics, Physics
- 2007
We describe two simple obstructions to the existence of Ricci-flat Kähler cone metrics on isolated Gorenstein singularities or, equivalently, to the existence of Sasaki-Einstein metrics on the links…