Breaking the integrin hinge. A defined structural constraint regulates integrin signaling.

Abstract

Integrins are heterodimeric (alpha, beta) cell adhesion receptors. We demonstrate that point mutations in the cytoplasmic domains of both the alpha and beta subunits promote constitutive signaling by the integrin alphaIIbbeta3. By generating charge reversal mutations, we show these "activating" mutations may act by disrupting a potential salt bridge between the membrane-proximal portions of the alpha and beta subunit cytoplasmic domains. Thus, the modulation of specific interactions between the alpha and beta subunit cytoplasmic domains may regulate transmembrane signaling through integrins. In addition, these activating mutations induce dominant alterations in cellular behavior, such as the assembly of the extracellular matrix. Consequently, somatic mutations in integrin cytoplasmic domains could have profound effects in vivo on integrin-dependent functions such as matrix assembly, cell migration, and anchorage-dependent cell growth and survival.

4 Figures and Tables

050100150'98'00'02'04'06'08'10'12'14'16
Citations per Year

1,513 Citations

Semantic Scholar estimates that this publication has 1,513 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Hughes1996BreakingTI, title={Breaking the integrin hinge. A defined structural constraint regulates integrin signaling.}, author={Paul E. Hughes and Francisca D{\'i}az-Gonz{\'a}lez and Lucille A. Leong and C Y-C Wu and J A McDonald and Sanford J Shattil and Mark H Ginsberg}, journal={The Journal of biological chemistry}, year={1996}, volume={271 12}, pages={6571-4} }