• Corpus ID: 235266111

Branching Brownian motion in an expanding ball and application to the mild obstacle problem

@inproceedings{Oz2021BranchingBM,
  title={Branching Brownian motion in an expanding ball and application to the mild obstacle problem},
  author={Mehmet Oz},
  year={2021}
}
We first consider a d-dimensional branching Brownian motion (BBM) evolving in an expanding ball, where the particles are killed at the boundary of the ball, and the expansion is subdiffusive in time. We study the large-time asymptotic behavior of the mass inside the ball, and obtain a large-deviation (LD) result as time tends to infinity on the probability that the mass is aytpically small. Then, we consider the problem of BBM among mild Poissonian obstacles, where a random ‘trap field’ in Rd… 

References

SHOWING 1-10 OF 23 REFERENCES
Optimal survival strategy for branching Brownian motion in a Poissonian trap field
  • Mehmet OzJ. Englander
  • Mathematics
    Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
  • 2019
We study a branching Brownian motion Z with a generic branching law, evolving in Rd, where a field of Poissonian traps is present. Each trap is a ball with constant radius. We focus on two cases of
Conditional speed of branching Brownian motion, skeleton decomposition and application to random obstacles
We study a branching Brownian motion $Z$ in $\mathbb{R}^d$, among obstacles scattered according to a Poisson random measure with a radially decaying intensity. Obstacles are balls with constant
Conditional speed of branching Brownian motion, skeleton decomposition and application to random obstacles
We study a branching Brownian motion $Z$ in $\mathbb{R}^d$, among obstacles scattered according to a Poisson random measure with a radially decaying intensity. Obstacles are balls with constant
Branching Brownian motion in strip: survival near criticality
We consider a branching Brownian motion with linear drift in which particles are killed on exiting the interval (0,K) and study the evolution of the process on the event of survival as the width of
The number of absorbed individuals in branching Brownian motion with a barrier
We study supercritical branching Brownian motion on the real line starting at the origin and with constant drift $c$. At the point $x > 0$, we add an absorbing barrier, i.e.\ individuals touching the
Survival of Near-Critical Branching Brownian Motion
Consider a system of particles performing branching Brownian motion with negative drift $\mu= \sqrt{2 - \varepsilon}$ and killed upon hitting zero. Initially there is one particle at x>0. Kesten
Survival of branching Brownian motion in a uniform trap field
The genealogy of branching Brownian motion with absorption
We consider a system of particles which perform branching Brownian motion with negative drift and are killed upon reaching zero, in the near-critical regime where the total population stays roughly
Branching brownian motion with absorption
...
...