# Branching Brownian motion in an expanding ball and application to the mild obstacle problem

@inproceedings{Oz2021BranchingBM, title={Branching Brownian motion in an expanding ball and application to the mild obstacle problem}, author={Mehmet Oz}, year={2021} }

We first consider a d-dimensional branching Brownian motion (BBM) evolving in an expanding ball, where the particles are killed at the boundary of the ball, and the expansion is subdiffusive in time. We study the large-time asymptotic behavior of the mass inside the ball, and obtain a large-deviation (LD) result as time tends to infinity on the probability that the mass is aytpically small. Then, we consider the problem of BBM among mild Poissonian obstacles, where a random ‘trap field’ in Rd…

## References

SHOWING 1-10 OF 23 REFERENCES

Optimal survival strategy for branching Brownian motion in a Poissonian trap field

- MathematicsAnnales de l'Institut Henri Poincaré, Probabilités et Statistiques
- 2019

We study a branching Brownian motion Z with a generic branching law, evolving in Rd, where a field of Poissonian traps is present. Each trap is a ball with constant radius. We focus on two cases of…

Conditional speed of branching Brownian motion, skeleton decomposition and application to random obstacles

- Mathematics
- 2015

We study a branching Brownian motion $Z$ in $\mathbb{R}^d$, among obstacles scattered according to a Poisson random measure with a radially decaying intensity. Obstacles are balls with constant…

Conditional speed of branching Brownian motion, skeleton decomposition and application to random obstacles

- Mathematics
- 2015

We study a branching Brownian motion $Z$ in $\mathbb{R}^d$, among obstacles scattered according to a Poisson random measure with a radially decaying intensity. Obstacles are balls with constant…

Branching Brownian motion in strip: survival near criticality

- Mathematics
- 2012

We consider a branching Brownian motion with linear drift in which particles are killed on exiting the interval (0,K) and study the evolution of the process on the event of survival as the width of…

The number of absorbed individuals in branching Brownian motion with a barrier

- Mathematics
- 2010

We study supercritical branching Brownian motion on the real line starting at the origin and with constant drift $c$. At the point $x > 0$, we add an absorbing barrier, i.e.\ individuals touching the…

Survival of Near-Critical Branching Brownian Motion

- Mathematics
- 2011

Consider a system of particles performing branching Brownian motion with negative drift $\mu= \sqrt{2 - \varepsilon}$ and killed upon hitting zero. Initially there is one particle at x>0. Kesten…

Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation: one sided travelling-waves

- Mathematics
- 2006

The genealogy of branching Brownian motion with absorption

- Mathematics
- 2013

We consider a system of particles which perform branching Brownian motion with negative drift and are killed upon reaching zero, in the near-critical regime where the total population stays roughly…