Boutet de Monvel ’ s Calculus and Groupoids I

  title={Boutet de Monvel ’ s Calculus and Groupoids I},
  author={Johannes Aastrup and Severino T. Melo and Bertrand Monthubert and Elmar Schrohe},
  • Johannes Aastrup, Severino T. Melo, +1 author Elmar Schrohe
  • Published 2006
Can Boutet de Monvel’s algebra on a compact manifold with boundary be obtained as the algebra Ψ(G) of pseudodifferential operators on some Lie groupoid G? If it could, the kernel G of the principal symbol homomorphism would be isomorphic to the groupoid C∗-algebra C∗(G). While the answer to the above question remains open, we exhibit in this paper a groupoid G such that C∗(G) possesses an ideal I isomorphic to G. In fact, we prove first that G ≃ Ψ⊗K with the C∗-algebra Ψ generated by the zero… CONTINUE READING

From This Paper

Topics from this paper.
2 Citations
37 References
Similar Papers


Publications citing this paper.


Publications referenced by this paper.
Showing 1-10 of 37 references

Functional calculus of pseudodifferential boundary problems, volume 65 of Progress in Mathematics

  • Gerd Grubb
  • 1996
Highly Influential
5 Excerpts

Index theory of elliptic boundary problems

  • Stephan Rempel, Bert-Wolfgang Schulze
  • North Oxford Academic Publishing Co. Ltd., London…
  • 1985
Highly Influential
4 Excerpts

The operator K-functor and extensions of C-algebras

  • G. G. Kasparov
  • Izv. Akad. Nauk SSSR Ser. Mat., 44(3):571–636…
  • 1980
Highly Influential
3 Excerpts

Spectral invariance of certain algebras of pseudodifferential operators

  • Robert Lauter, Bertrand Monthubert, Victor Nistor
  • J. Inst. Math. Jussieu,
  • 2005
1 Excerpt

Stable C-algebras. In Operator algebras and applications, volume 38 of Adv

  • Mikael Rørdam
  • Stud. Pure Math., pages 177–199. Math. Soc. Japan…
  • 2004

A short introduction to Boutet de Monvel’s calculus. In Approaches to singular analysis (Berlin, 1999), volume 125 of Oper

  • Elmar Schrohe
  • Theory Adv. Appl.,
  • 2001
2 Excerpts

Schrohe. Trace expansions and the noncommutative residue for manifolds with boundary

  • Gerd Grubb, Elmar
  • J. Reine Angew. Math.,
  • 2001
1 Excerpt

Similar Papers

Loading similar papers…