Bounds on polynomial-time list decoding of rank metric codes

Abstract

This contribution provides bounds on the list size of rank metric codes in order to understand whether polynomial-time list decoding is possible or not. First, an exponential upper bound is derived, which holds for any rank metric code of length n and minimum rank distance d. Second, a lower bound proves that there exists a rank metric code over F<sub>q… (More)
DOI: 10.1109/ISIT.2013.6620280

Topics

Cite this paper

@article{WachterZeh2013BoundsOP, title={Bounds on polynomial-time list decoding of rank metric codes}, author={Antonia Wachter-Zeh}, journal={2013 IEEE International Symposium on Information Theory}, year={2013}, pages={519-523} }