Boundedness of Calderón–Zygmund operators on ball Campanato-type function spaces

@article{Chen2022BoundednessOC,
  title={Boundedness of Calder{\'o}n–Zygmund operators on ball Campanato-type function spaces},
  author={Yiqun Chen and Hongchao Jia and Dachun Yang},
  journal={Analysis and Mathematical Physics},
  year={2022},
  volume={12}
}
Let X be a ball quasi-Banach function space on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^n$$\end{document} satisfying some mild assumptions. In this article, the authors first find a reasonable version T~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage… 
1 Citations

References

SHOWING 1-10 OF 78 REFERENCES

Mixed-norm Herz spaces and their applications in related Hardy spaces

In this paper, the authors introduce a class of mixed-norm Herz spaces, [Formula: see text], which is a natural generalization of mixed-norm Lebesgue spaces and some special cases of which naturally

Dual spaces of anisotropic mixed-norm Hardy spaces

Let $\vec{a}:=(a_1,\ldots,a_n)\in[1,\infty)^n$, $\vec{p}:=(p_1,\ldots,p_n)\in(0,\infty)^n$ and $H_{\vec{a}}^{\vec{p}}(\mathbb{R}^n)$ be the anisotropic mixed-norm Hardy space associated with

Real-variable characterizations of local Orlicz-slice Hardy spaces with application to bilinear decompositions

Recently, both the bilinear decompositions $h^1(\mathbb{R}^n)\times \mathrm{\,bmo}(\mathbb{R}^n) \subset L^1 (\mathbb{R}^n)+h_\ast^\Phi(\mathbb{R}^n)$ and $h^1(\mathbb{R}^n) \times

Weak Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces II: Littlewood–Paley Characterizations and Real Interpolation

Let X be a ball quasi-Banach function space on $${\mathbb R}^n$$ R n . In this article, assuming that the powered Hardy–Littlewood maximal operator satisfies some Fefferman–Stein vector-valued

Littlewood-Paley Characterizations of Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces

Let X be a ball quasi-Banach function space on $${{\mathbb {R}}}^n$$ R n . In this article, assuming that the powered Hardy–Littlewood maximal operator satisfies some Fefferman–Stein vector-valued

Molecular characterization of weak Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type with its applications to Littlewood–Paley function characterizations

Abstract Let ( 𝕏 , d , μ ) {(\mathbb{X},d,\mu)} be a space of homogeneous type in the sense of R. R. Coifman and G. Weiss, and let X ⁢ ( 𝕏 ) {X(\mathbb{X})} be a ball quasi-Banach function space on

Atomic and Littlewood–Paley Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications

Let $$\vec {a}:=(a_1,\ldots ,a_n)\in [1,\infty )^n$$a→:=(a1,…,an)∈[1,∞)n, $$\vec {p}:=(p_1,\ldots ,p_n)\in (0,\infty )^n$$p→:=(p1,…,pn)∈(0,∞)n and $$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$Ha→p→(Rn)

Compactness of Commutators of Integral Operators with Functions in Campanato Spaces on Orlicz-Morrey Spaces

We consider the commutators [ b ,  T ] and $$[b,I_{\rho }]$$ [ b , I ρ ] , where T is a Calderón–Zygmund operator, $$I_{\rho }$$ I ρ is a generalized fractional integral operator and b is a function

Weak Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Decompositions, Real Interpolation, and Calderón–Zygmund Operators

Let $(\mathbb{X},d,\mu)$ be a space of homogeneous type in the sense of R. R. Coifman and G. Weiss, and $X(\mathbb{X})$ a ball quasi-Banach function space on $\mathbb{X}$. In this article, the

Applications of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces

Let X be a ball quasi-Banach function space satisfying some minor assumptions. In this article, the authors establish the characterizations of $$H_X(\mathbb {R}^n)$$ H X ( R n ) , the Hardy space
...