Bottleneck effect in three-dimensional turbulence simulations.


At numerical resolutions around 512(3) and above, three-dimensional energy spectra from turbulence simulations begin to show noticeably shallower spectra than k(-5/3) near the dissipation wave number ("bottleneck effect"). This effect is shown to be significantly weaker in one-dimensional spectra such as those obtained in wind tunnel turbulence. The difference can be understood in terms of the transformation between the one-dimensional and three-dimensional energy spectra under the assumption that the turbulent velocity field is isotropic. Transversal and longitudinal energy spectra are similar and can both accurately be computed from the full three-dimensional spectra. Second-order structure functions are less susceptible to the bottleneck effect and may be better suited for inferring the scaling exponent from numerical simulation data.

Extracted Key Phrases

6 Figures and Tables

Cite this paper

@article{Dobler2003BottleneckEI, title={Bottleneck effect in three-dimensional turbulence simulations.}, author={Wolfgang Dobler and N. E. L. Haugen and Tarek A Yousef and Axel Brandenburg}, journal={Physical review. E, Statistical, nonlinear, and soft matter physics}, year={2003}, volume={68 2 Pt 2}, pages={026304} }