# Bootstrap Methods: Another Look at the Jackknife

@article{Efron1979BootstrapMA,
title={Bootstrap Methods: Another Look at the Jackknife},
journal={Annals of Statistics},
year={1979},
volume={7},
pages={1-26}
}
• B. Efron
• Published 1979
• Mathematics
• Annals of Statistics
We discuss the following problem given a random sample X = (X 1, X 2,…, X n) from an unknown probability distribution F, estimate the sampling distribution of some prespecified random variable R(X, F), on the basis of the observed data x. (Standard jackknife theory gives an approximate mean and variance in the case R(X, F) = $$\theta \left( {\hat F} \right) - \theta \left( F \right)$$, θ some parameter of interest.) A general method, called the “bootstrap”, is introduced, and shown to work…
8,145 Citations

### Data-driven selection of regressors and the bootstrap

• Mathematics
• 1988
Consider the classical linear model with n observations, a fixed design matrix X, and i.i.d. Gaussian residuals with zero mean and positive variance. Suppose it is believed that some of the columns

### A Bootstrap Procedure for Estimating the Lundberg Coefficient

• Mathematics
• 1992
Efron (1979) introduced a new resampling method, the bootstrap: Let X n = (X1,...,X n ) be a given sample of i.i.d. random variables (r.v. s) with distribution function (d.f.) F. From X n construct

### Bootstrapping the Kaplan—Meier Estimator

Abstract Randomly censored data consist of iid pairs of observations (Xi, δi), i = 1, …, n; if δ i = 0, Xi denotes a censored observation, and if δ i = 1, Xi denotes an exact “survival” time, which

### Richardson Extrapolation and the Bootstrap

• Mathematics
• 1988
Abstract Simulation methods [particularly Efron's (1979) bootstrap] are being applied more and more frequently in statistical inference. Given data (X 1 …, Xn ) distributed according to P, which

### A note on proving that the (modified) bootstrap works

Let be a sample of independent, identically distributed (i.i.d.) random variables with common distribution function F and suppose is a bootstrap sample of i.i.d. random variables from the empirical

### Bootstrap choice of tuning parameters

• Mathematics
• 1990
AbstractConsider the problem of estimating θ=θ(P) based on dataxn from an unknown distributionP. Given a family of estimatorsTn, β of θ(P), the goal is to choose β among β∈I so that the resulting

### 19 Bootstrap methodology

• Economics, Mathematics
Computational Statistics
• 1993

### Nonparametric Bootstrap Tests: Some Applications

In a series of papers Beran (1984, 1986, 1988) proposed bootstrap techniques for hypothesis testing. These tests are concerned with the following situation. Let {X 1, X 2,…, X n} be an i.i.d. sample

### The Efficiency and Consistency of Approximations to the Jackknife Variance Estimators

Abstract The problem considered is the computation reduction for general delete-d jackknife variance estimators. The delete-d jackknife estimator was proved consistent (Shao and Wu 1986), and in this