Blt Azumaya algebras and moduli of maximal orders

@article{Kulkarni2011BltAA,
  title={Blt Azumaya algebras and moduli of maximal orders},
  author={Rajesh S. Kulkarni and Max Lieblich},
  journal={Mathematische Annalen},
  year={2011},
  volume={376},
  pages={267-287}
}
We study moduli spaces of maximal orders in a ramified division algebra over the function field of a smooth projective surface. As in the case of moduli of stable commutative surfaces, we show that there is a Kollár-type condition giving a better moduli problem with the same geometric points: the stack of blt Azumaya algebras. One virtue of this refined moduli problem is that it admits a compactification with a virtual fundamental class. 
1 Citations

References

SHOWING 1-10 OF 22 REFERENCES
Compactified moduli of projective bundles
  • 12
  • PDF
Moduli of twisted sheaves
  • 118
  • PDF
Remarks on the stack of coherent algebras
  • 62
  • PDF
Canonical singularities of orders over surfaces
  • 17
  • PDF
Moduli of twisted orbifold sheaves
  • 14
  • PDF
Sheaves on Artin stacks
  • 137
  • PDF
The minimal model program for orders over surfaces
  • 36
  • Highly Influential
  • PDF
Twisted sheaves and the period-index problem
  • 108
  • PDF
...
1
2
3
...