Blowup in Reaction-Diffusion Systems with Dissipation of Mass

  title={Blowup in Reaction-Diffusion Systems with Dissipation of Mass},
  author={Michel Pierre and Didier Schmitt},
  journal={SIAM Review},
We prove possible blowup in finite time of the solutions to reaction-diffusion systems which preserve nonnegativity and for which the total mass of the components is nonincreasing in time (two natural properties in applications). This is done by presenting explicit counterexamples constructed with the help of formal computation software. Several partial results of global existence had been obtained previously in the literature. Our counterexamples explain a posteriori why extra conditions were… CONTINUE READING

From This Paper

Topics from this paper.


Publications citing this paper.


Publications referenced by this paper.
Showing 1-10 of 34 references

Existence globale ou explosion pour les systèmes de réaction-diffusion avec contrôle de masse

  • D. Schmitt
  • Ph.D. thesis, Université Henri Poincaré–Nancy I…
  • 1995
Highly Influential
5 Excerpts

Existence globale pour des systèmes de réaction-diffusion avec contrôle de masse

  • N. Boudiba
  • Ph.D. thesis, Université de Rennes 1, France
  • 1999
3 Excerpts

Diffusion terms in systems of reaction diffusion equations can lead to blow-up

  • M. Guedda, M. Kirane
  • J. Math. Anal. Appl., 218
  • 1998
1 Excerpt

Diffusion-induced blowup in a nonlinear parabolic system

  • N. Mizoguchi, H. Ninomiya, E. Yanagida
  • J. Dynam. Differential Equations, 10
  • 1998
1 Excerpt

Global existence for reaction-diffusion systems modelling ignition

  • M. A. Herrero, A. A. Lacey, J. L. Velàzquez
  • Arch. Rational Mech. Anal., 142
  • 1998
1 Excerpt

Triangular” reaction-diffusion systems with integrable initial data

  • S. Bonafede, D. Schmitt
  • Nonlinear Anal., 33
  • 1998
2 Excerpts

Influence of mixed boundary conditions in some reactiondiffusion systems

  • R. H. Martin, M. Pierre
  • Proc. Roy. Soc. Edinburgh Sect. A, 127
  • 1997
1 Excerpt

Global existence and boundedness inreactiondi  usion systems

  • R. H. Martin, M. Pierre
  • SIAM J . Math . Anal .
  • 1994

Similar Papers

Loading similar papers…