Blaschke- and Minkowski-endomorphisms of Convex Bodies


We consider maps of the family of convex bodies in Euclidean ddimensional space into itself that are compatible with certain structures on this family: A Minkowski-endomorphism is a continuous, Minkowski-additive map that commutes with rotations. For d ≥ 3, a representation theorem for such maps is given, showing that they are mixtures of certain prototypes… (More)