Black hole entropy from loop quantum gravity in higher dimensions

  title={Black hole entropy from loop quantum gravity in higher dimensions},
  author={Norbert Bodendorfer},
  journal={Physics Letters B},
Entropy of higher dimensional nonrotating isolated horizons from loop quantum gravity
In this paper, we extend the calculation of the entropy of nonrotating isolated horizons in four-dimensional spacetime to that in a higher-dimensional spacetime. We show that the boundary degrees of
Wald entropy formula and loop quantum gravity
We outline how the Wald entropy formula naturally arises in loop quantum gravity based on recently introduced dimension-independent connection variables. The key observation is that in a loop
The thermodynamics of isolated horizon in higher dimensional loop quantum gravity
The statistical mechanical calculation of the thermodynamical properties of higher-dimensional non-rotating isolated horizons is studied in the loop quantum gravity framework. By employing the
BTZ Black Hole Entropy and the Turaev–Viro Model
We show the explicit agreement between the derivation of the Bekenstein–Hawking entropy of a Euclidean BTZ black hole from the point of view of spin foam models and canonical quantization. This is
Immirzi parameter and quasinormal modes in four and higher spacetime dimensions
There is a one-parameter quantization ambiguity in loop quantum gravity, which is called the Immirzi parameter. In this paper, we fix this free parameter by considering the quasinormal mode spectrum
A note on entanglement entropy and quantum geometry
It has been argued that the entropy computed in the isolated horizon framework of loop quantum gravity is closely related to the entanglement entropy of the gravitational field, and that the
Quantum theory of charged isolated horizons
We describe the quantum theory of isolated horizons with electromagnetic or non-Abelian gauge charges in a setting in which both the gauge and gravitational field are quantized. We consider the
J an 2 01 8 Quantum theory of charged isolated horizons
We describe the quantum theory of isolated horizons with electromagnetic or non-Abelian gauge charges in a setting in which both gauge and gravitational field are quantized. We consider the distorted
Loop Quantum Gravity
This article presents an "in-a-nutshell" yet self-contained introductory review on loop quantum gravity (LQG) -- a background-independent, nonperturbative approach to a consistent quantum theory of
Reformulation of boundary BF theory approach to statistical explanation of the entropy of isolated horizons
It is shown in this paper that the symplectic form for the system consisting of D-dimensional bulk Palatini gravity and SO(1, 1) BF theory on an isolated horizon as a boundary just contains the bulk


Entropy of generic quantum isolated horizons
We review our recent proposal of a method to extend the quantization of spherically symmetric isolated horizons, a seminal result of loop quantum gravity, to a phase space containing horizons of
Black hole entropy and higher curvature interactions.
A general formula for the entropy of stationary black holes in Lovelock higher-curvature gravity theories is obtained by integrating the first law of black hole mechanics, which is derived by
Generic isolated horizons in loop quantum gravity
Isolated horizons model equilibrium states of classical black holes. A detailed quantization, starting from a classical phase space restricted to spherically symmetric horizons, exists in the
Logarithmic corrections to black hole entropy, from the Cardy formula
Many recent attempts to calculate black hole entropy from first principles rely on conformal field theory techniques. By examining the logarithmic corrections to the Cardy formula, I compute the
Black holes in full quantum gravity
Quantum black holes have been studied extensively in quantum gravity and string theory, using various semiclassical or background-dependent approaches. We explore the possibility of studying black
Black hole entropy and SU(2) Chern-Simons theory.
This work shows that this boundary condition given on a null surface representing the event horizon can be treated in a manifestly SU(2) invariant manner and settles previous controversies concerning the counting of states.
Quantum geometry of isolated horizons and black hole entropy
Using the earlier developed classical Hamiltonian framework as the point of departure, we carry out a non-perturbative quantization of the sector of general relativity, coupled to matter, admitting
Loop quantum gravity without the Hamiltonian constraint
We show that under certain technical assumptions, including the existence of a constant mean curvature (CMC) slice and strict positivity of the scalar field, general relativity conformally coupled to