Black hole entropy from loop quantum gravity in higher dimensions

@article{Bodendorfer2013BlackHE,
  title={Black hole entropy from loop quantum gravity in higher dimensions},
  author={Norbert Bodendorfer},
  journal={Physics Letters B},
  year={2013},
  volume={726},
  pages={887-891}
}
Entropy of higher dimensional nonrotating isolated horizons from loop quantum gravity
In this paper, we extend the calculation of the entropy of nonrotating isolated horizons in four-dimensional spacetime to that in a higher-dimensional spacetime. We show that the boundary degrees of
Wald entropy formula and loop quantum gravity
We outline how the Wald entropy formula naturally arises in loop quantum gravity based on recently introduced dimension-independent connection variables. The key observation is that in a loop
BTZ Black Hole Entropy and the Turaev–Viro Model
We show the explicit agreement between the derivation of the Bekenstein–Hawking entropy of a Euclidean BTZ black hole from the point of view of spin foam models and canonical quantization. This is
Immirzi parameter and quasinormal modes in four and higher spacetime dimensions
There is a one-parameter quantization ambiguity in loop quantum gravity, which is called the Immirzi parameter. In this paper, we fix this free parameter by considering the quasinormal mode spectrum
A note on entanglement entropy and quantum geometry
It has been argued that the entropy which one is computing in the isolated horizon framework of loop quantum gravity is closely related to the entanglement entropy of the gravitational field and that
Quantum theory of charged isolated horizons
We describe the quantum theory of isolated horizons with electromagnetic or non-Abelian gauge charges in a setting in which both the gauge and gravitational field are quantized. We consider the
J an 2 01 8 Quantum theory of charged isolated horizons
We describe the quantum theory of isolated horizons with electromagnetic or non-Abelian gauge charges in a setting in which both gauge and gravitational field are quantized. We consider the distorted
Loop Quantum Gravity
This article presents an "in-a-nutshell" yet self-contained introductory review on loop quantum gravity (LQG) -- a background-independent, nonperturbative approach to a consistent quantum theory of
Reformulation of boundary BF theory approach to statistical explanation of the entropy of isolated horizons
It is shown in this paper that the symplectic form for the system consisting of D-dimensional bulk Palatini gravity and SO(1, 1) BF theory on an isolated horizon as a boundary just contains the bulk
Quantum Gravity at the Corner
We investigate the quantum geometry of a 2d surface S bounding the Cauchy slices of a 4d gravitational system. We investigate in detail for the first time the boundary symplectic current that
...
1
2
3
...

References

SHOWING 1-10 OF 42 REFERENCES
Entropy of generic quantum isolated horizons
We review our recent proposal of a method to extend the quantization of spherically symmetric isolated horizons, a seminal result of loop quantum gravity, to a phase space containing horizons of
Black hole entropy from the SU(2)-invariant formulation of type I isolated horizons
A detailed analysis of the spherically symmetric isolated horizon system is performed in terms of the connection formulation of general relativity. The system is shown to admit a manifestly SU(2)
Black hole entropy and higher curvature interactions.
A general formula for the entropy of stationary black holes in Lovelock higher-curvature gravity theories is obtained by integrating the first law of black hole mechanics, which is derived by
The SU(2) black hole entropy revisited
We study the state-counting problem that arises in the SU(2) black hole entropy calculation in loop quantum gravity. More precisely, we compute the leading term and the logarithmic correction of both
Black Hole Entropy from Conformal Field Theory in Any Dimension
Restricted to a black hole horizon, the ``gauge'' algebra of surface deformations in general relativity contains a Virasoro subalgebra with a calculable central charge. The fields in any quantum
New Variables for Classical and Quantum Gravity in all Dimensions III. Quantum Theory
We quantise the new connection formulation of D+1 dimensional General Relativity developed in our companion papers by Loop Quantum Gravity (LQG) methods. It turns out that all the tools prepared for
Generic isolated horizons in loop quantum gravity
Isolated horizons model equilibrium states of classical black holes. A detailed quantization, starting from a classical phase space restricted to spherically symmetric horizons, exists in the
Logarithmic correction to the bekenstein-hawking entropy
The exact formula derived by us earlier for the entropy of a four dimensional nonrotating black hole within the quantum geometry formulation of the event horizon in terms of boundary states of a
Logarithmic corrections to black hole entropy, from the Cardy formula
Many recent attempts to calculate black hole entropy from first principles rely on conformal field theory techniques. By examining the logarithmic corrections to the Cardy formula, I compute the
...
1
2
3
4
5
...