Bipartizing fullerenes

  title={Bipartizing fullerenes},
  author={Zdenek Dvorak and Bernard Lidick{\'y} and Riste Skrekovski},
  journal={Eur. J. Comb.},
A fullerene graph is a cubic bridgeless planar graph with twelve 5faces such that all other faces are 6-faces. We show that any fullerene graph on n vertices can be bipartized by removing O( √ n) edges. This bound is asymptotically optimal. 

From This Paper

Figures, tables, and topics from this paper.


Publications citing this paper.


Publications referenced by this paper.
Showing 1-10 of 15 references

Computing the bipartite edge frustration of fullerene graphs

Discrete Applied Mathematics • 2007
View 6 Excerpts
Highly Influenced

Bipartivity of fullerene graphs and fullerene stability

T. Došlić
Chemical Physics Letters 412 • 2005
View 5 Excerpts
Highly Influenced


F. Kardoš
Král’, J. Mǐskuf, J.-S. Sereni, Fullerene graphs have exponentially many perfect matchings, Journal Mathematical Chemistry 46 • 2009
View 1 Excerpt

Kroto , Isolation , separation and characterisation of the fullerences C 60 and C 70 : the third form of carbon

J. P. Hare, A. K. Abdul-Sada, W. H.
Discrete Mathematical Chemistry , DIMACS Series in Discrete Mathematics and Theoretical Computer Science • 2000

Geometrical and combinatorial questions about fullerenes

Discrete Mathematical Chemistry • 1998
View 1 Excerpt

Science of Fullerenes and Carbon Nanotubes

M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund
Academic Press, New York • 1996
View 1 Excerpt

An Atlas of Fullerenes

P. W. Fowler, D. E. Manolopoulos
Oxford Univ. Press, Oxford • 1995
View 1 Excerpt


R. Taylor, J. P. Hare, A. K. Abdul-Sada, H. W. Kroto
separation and characterisation of the fullerences C60 and C70: the third form of carbon, Journal of the Chemical Society, Chemical Communications • 1990

Similar Papers

Loading similar papers…