Biorthogonal wavelet bases for the boundary element method

@inproceedings{Harbrecht2004BiorthogonalWB,
  title={Biorthogonal wavelet bases for the boundary element method},
  author={Helmut Harbrecht and Reinhold Schneider},
  year={2004}
}
As shown by Dahmen, Harbrecht and Schneider [7, 23, 32], the fully discrete wavelet Galerkin scheme for boundary integral equations scales linearly with the number of unknowns without compromising the accuracy of the underlying Galerkin scheme. The supposition is a wavelet basis with a sufficiently large number of vanishing moments. In this paper we present several constructions of appropriate wavelet bases on manifolds based on the biorthogonal spline wavelets of A. Cohen, I. Daubechies and J… CONTINUE READING
32 Citations
36 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 36 references

Wavelet Galerkin schemes for the boundary element method in three dimensions

  • H. Harbrecht
  • Ph.D. Thesis, Technische Universität Chemnitz…
  • 2001
Highly Influential
8 Excerpts

Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur Lösung großer vollbesetzter Gleichungssysteme (B

  • R. Schneider
  • G. Teubner, Stuttgart,
  • 1998
Highly Influential
8 Excerpts

Wavelet analysis of refinement equations

  • L. Villemoers
  • SIAM J. Math. Anal. 25, 1433–1460
  • 1994
Highly Influential
3 Excerpts

Wavelet preconditioning for the coupling of FEMBEM , Num

  • F. Paiva H. Harbrecht, C. Pérez, R. Schneider
  • . Lin . Alg . Appl .
  • 2002

On a hierarchical three point basis of piecewise linear functions over smooth boundaries

  • A. Rathsfeld
  • in: Operator Theory: Advances and Applications…
  • 2001

Similar Papers

Loading similar papers…