Biomechanical Properties of In Vivo Human Skin From Dynamic Optical Coherence Elastography

Abstract

Dynamic optical coherence elastography is used to determine in vivo skin biomechanical properties based on mechanical surface wave propagation. Quantitative Young's moduli are measured on human skin from different sites, orientations, and frequencies. Skin thicknesses, including measurements from different layers, are also measured simultaneously. Experimental results show significant differences among measurements from different skin sites, between directions parallel and orthogonal to Langer's lines, and under different skin hydration states. Results also suggest surface waves with different driving frequencies represent skin biomechanical properties from different layers in depth. With features such as micrometer-scale resolution, noninvasive imaging, and real-time processing from the optical coherence tomography technology, this optical measurement technique has great potential for measuring skin biomechanical properties in dermatology.

DOI: 10.1109/TBME.2009.2033464

Extracted Key Phrases

8 Figures and Tables

0204020102011201220132014201520162017
Citations per Year

129 Citations

Semantic Scholar estimates that this publication has 129 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Liang2010BiomechanicalPO, title={Biomechanical Properties of In Vivo Human Skin From Dynamic Optical Coherence Elastography}, author={Xing Liang and Stephen Boppart}, journal={IEEE transactions on bio-medical engineering}, year={2010}, volume={57 4}, pages={953-9} }