Biogeochemistry of Lead. Its Release to the Environment and Chemical Speciation.

Abstract

Lead (Pb) is a metal that is not essential for life processes and proves acutely toxic to most organisms. Compared to other metals Pb is rather immobile in the environment but still its biogeochemical cycling is greatly perturbed by human activities. In this review we present a summary of information describing the physical and chemical properties of Pb, its distribution in crustal materials, and the processes, both natural and anthropogenic, that contribute to the metal's mobilization in the biosphere. The relatively high volatility of Pb metal, low melting point, its large ionic radius, and its chemical speciation in aquatic systems contributes to its redistribution by anthropogenic and natural processes. The biogeochemical cycle of Pb is significantly altered by anthropogenic inputs. This alteration began in antiquity but accelerated during the industrial revolution, which sparked increases in both mining activities and fossil fuel combustion. Estimates of the flux of Pb to the atmosphere, its deposition and processing in soils and freshwater systems are presented. Finally, the basin scale distribution of dissolved Pb in the ocean is interpreted in light of the chemical speciation and association with inorganic and organic particulate matter. The utility of stable radiogenic Pb isotopes, as a complement to concentration data, to trace inputs to the ocean, better understand the biogeochemical cycling of Pb and track water mass circulation in the ocean is discussed. An ongoing international survey of trace elements and their isotopes in seawater will undoubtedly increase our understanding of the deposition, biogeochemical cycling and fate of this infamous toxic metal.

DOI: 10.1515/9783110434330-002

Cite this paper

@article{Cullen2017BiogeochemistryOL, title={Biogeochemistry of Lead. Its Release to the Environment and Chemical Speciation.}, author={Jay T. Cullen and Jason McAlister}, journal={Metal ions in life sciences}, year={2017}, volume={17} }