Bibliography of Selected Manganese Publications Related to Drinking Water Exposures

Abstract

Compared to adults, children maybe more highly exposed to toxic substances in drinking water because they consume more water per unit of body weight. The U.S. Environmental Protection Agency (USEPA) has developed new guidance for selecting age groups and age-specific exposure factors for assessing children’s exposures and risks to environmental contaminants. Research Aim: To demonstrate the application and importance of applying age-specific drinking water intake rates, health reference values, and exposure scenarios when assessing drinking water exposures because these approaches illustrate the potential for greater potential for adverse health effects among children.Methods: manganese, an essential nutrient and neurotoxicant, was selected as a case study and chemical of potential concern for children’s health. A screening-level risk assessment was performed using age-specific drinking water intake rates and manganese concentrations from U.S. public drinking water systems. Results: When age-specific drinking water intake rates are used to calculate dose, formula-fed infants receive the highest dose of manganese from drinking water compared to all other age groups. Estimated hazard quotients suggest adverse health effects are possible. Use of USEPA’s standardized childhood age groups and childhood exposure factors significantly improves the understanding of childhood exposure and risks. Grandjean, P. and P. J. Landrigan (2014). "Neurobehavioural effects of developmental toxicity." The Lancet Neurology 13(3): 330-338. http://www.thelancet.com/journals/laneur/issue/current?tab=past Abstract: Neurodevelopmental disabilities, including autism, attention-deficit hyperactivity disorder, dyslexia, and other cognitive impairments, affect millions of children worldwide, and some diagnoses seem to be increasing in frequency. Industrial chemicals that injure the developing brain are among the known causes for this rise in prevalence. In 2006, we did a systematic review and identified five industrial chemicals as developmental neurotoxicants: lead, methylmercury, polychlorinated biphenyls, arsenic, and toluene. Since 2006, epidemiological studies have documented six additional developmental neurotoxicants?manganese, fluoride, chlorpyrifos, dichlorodiphenyltrichloroethane, tetrachloroethylene, and the polybrominated diphenyl ethers. We postulate that even more neurotoxicants remain undiscovered. To control the pandemic of developmental neurotoxicity, we propose a global prevention strategy. Untested chemicals should not be presumed to be safe to brain development, and chemicals in existing use and all new chemicals must therefore be tested for developmental neurotoxicity. To coordinate these efforts and to accelerate translation of science into prevention, we propose the urgent formation of a new international clearinghouse.

Cite this paper

@inproceedings{Landrigan2014BibliographyOS, title={Bibliography of Selected Manganese Publications Related to Drinking Water Exposures}, author={Philip J . Landrigan and Marju Vahter}, year={2014} }