Bi-paracontact structures and Legendre foliations

@inproceedings{Montano2010BiparacontactSA,
  title={Bi-paracontact structures and Legendre foliations},
  author={Beniamino Cappelletti Montano},
  year={2010}
}
We study almost bi-paracontact structures on contact manifolds. We prove that if an almost bi-paracontact structure is defined on a contact manifold $(M,\eta)$, then under some natural assumptions of integrability, $M$ carries two transverse bi-Legendrian structures. Conversely, if two transverse bi-Legendrian structures are defined on a contact manifold, then $M$ admits an almost bi-paracontact structure. We define a canonical connection on an almost bi-paracontact manifold and we study its… CONTINUE READING

Citations

Publications citing this paper.
SHOWING 1-10 OF 13 CITATIONS

References

Publications referenced by this paper.
SHOWING 1-10 OF 26 REFERENCES

The structure of Legendre foliations

  • M. Y. Pang
  • Trans. Amer. Math. Soc. 320 n. 2
  • 1990
VIEW 5 EXCERPTS
HIGHLY INFLUENTIAL

A full classification of contact metric $(k,\mu)$-spaces

VIEW 5 EXCERPTS
HIGHLY INFLUENTIAL

Contact metric (κ

  • B. Cappelletti Montano, L. Di Terlizzi
  • μ)-spaces as bi-Legendrian manifolds, Bull. Austral. Math. Soc. 77
  • 2008
VIEW 3 EXCERPTS
HIGHLY INFLUENTIAL

Cappelletti Montano , Bi - Legendrian structures and paracontact geometry

  • F. L. Williams Kaneyuki
  • Int . J . Geom . Meth . Mod . Phys .
  • 2009

Cappelletti Montano , Bi - Legendrian connections

  • L. Di Terlizzi Cappelletti Montano
  • Ann . Polon . Math .
  • 2005