Corpus ID: 88519358

Bernstein - von Mises Theorem for growing parameter dimension

@article{Spokoiny2013BernsteinV,
  title={Bernstein - von Mises Theorem for growing parameter dimension},
  author={V. Spokoiny},
  journal={arXiv: Statistics Theory},
  year={2013}
}
  • V. Spokoiny
  • Published 2013
  • Mathematics
  • arXiv: Statistics Theory
  • This paper revisits the prominent Fisher, Wilks, and Bernstein -- von Mises (BvM) results from different viewpoints. Particular issues to address are: nonasymptotic framework with just one finite sample, possible model misspecification, and a large parameter dimension. In particular, in the case of an i.i.d. sample, the mentioned results can be stated for any smooth parametric family provided that the dimension \(p \) of the parameter space satisfies the condition "\(p^{2}/n \) is small" for… CONTINUE READING
    34 Citations
    Towards Model Selection for Local Log-Density Estimation. Fisher and Wilks-type theorems
    • Highly Influenced
    • PDF
    A NEW PERSPECTIVE ON ROBUST M-ESTIMATION: FINITE SAMPLE THEORY AND APPLICATIONS TO DEPENDENCE-ADJUSTED MULTIPLE TESTING.
    • 24
    • Highly Influenced
    • PDF
    On rank estimators in increasing dimensions
    • 4
    • PDF
    Minimax Estimation of Functionals of Discrete Distributions
    • 193
    • PDF
    On the Bernstein-Von Mises Theorem for High Dimensional Nonlinear Bayesian Inverse Problems
    • 12
    • PDF
    Adaptive Huber Regression
    • Q. Sun, W. Zhou, J. Fan
    • Computer Science, Mathematics
    • Journal of the American Statistical Association
    • 2020
    • 56
    • Highly Influenced
    • PDF

    References

    SHOWING 1-10 OF 45 REFERENCES
    Critical dimension in the semiparametric Bernstein—von Mises theorem
    • 6
    • Highly Influential
    BERNSTEIN-VON MISES THEOREM FOR LINEAR FUNCTIONALS OF THE DENSITY
    • 98
    • PDF
    The semiparametric Bernstein-von Mises theorem
    • 93
    • Highly Influential
    • PDF
    A semiparametric Bernstein–von Mises theorem for Gaussian process priors
    • 80
    • PDF
    Bernstein–von Mises theorems for Gaussian regression with increasing number of regressors
    • 62
    • Highly Influential
    • PDF
    A Bernstein-Von Mises Theorem for discrete probability distributions
    • 42
    • PDF
    Nonparametric Bernstein–von Mises theorems in Gaussian white noise
    • 119
    • PDF
    A high-dimensional Wilks phenomenon
    • 38