Bernstein theorems for length and area decreasing minimal maps
@article{SavasHalilaj2014BernsteinTF, title={Bernstein theorems for length and area decreasing minimal maps}, author={Andreas Savas-Halilaj and Knut Smoczyk}, journal={Calculus of Variations and Partial Differential Equations}, year={2014}, volume={50}, pages={549-577} }
In this article we prove Liouville and Bernstein theorems in higher codimension for length and area decreasing maps between two Riemannian manifolds. The proofs are based on a strong elliptic maximum principle for sections in vector bundles, which we also present in this article.
19 Citations
Graphical Mean Curvature Flow
- MathematicsNonlinear Analysis, Differential Equations, and Applications
- 2021
In this survey article, we discuss recent developments on the mean curvature flow of graphical submanifolds, generated by smooth maps between Riemannian manifolds. We will see interesting…
Mean curvature flow of contractions between Euclidean spaces
- Mathematics
- 2016
We consider the mean curvature flow of the graphs of maps between Euclidean spaces of arbitrary dimension. If the initial map is Lipschitz and satisfies a length-decreasing condition, we show that…
The Ricci-Bourguignon Flow
- Mathematics
- 2015
In this paper we present some results on a family of geometric flows introduced by Bourguignon that generalize the Ricci flow. For suitable values of the scalar parameter involved in these flows, we…
On the topology of translating solitons of the mean curvature flow
- Mathematics
- 2014
In the present article we obtain classification results and topological obstructions for the existence of translating solitons of the mean curvature flow in euclidean space.
Mean curvature flow of area decreasing maps between Riemann surfaces
- Mathematics
- 2016
In this article, we give a complete description of the evolution of an area decreasing map $$f{: }M\rightarrow N$$f:M→N, induced by the mean curvature of their graph, in the situation where M and N…
A Schwarz–Pick lemma for minimal maps
- MathematicsAnnals of Global Analysis and Geometry
- 2019
In this note, we prove a Schwarz–Pick-type lemma for minimal maps between negatively curved Riemann surfaces. More precisely, we prove that if $$f:M\rightarrow N$$f:M→N is a minimal map with bounded…
Gauss maps of harmonic and minimal great circle fibrations
- Mathematics
- 2022
. We investigate Gauss maps associated to great circle fibrations of S 3 . We show that the associated Gauss map to such a fibration is harmonic (respectively minimal) if and only if the unit vector…
A Bernstein-Type Theorem for Minimal Graphs of Higher Codimension via Singular Values
- Mathematics
- 2021
Instead on the slope function, we establish a condition on the singular values of the differential of a vector-valued function f : ℝ n → ℝ m $f:\mathbb {R}^{n} \to \mathbb {R}^{m}$ which ensures that…
THE GAUSS MAP OF A HARMONIC SUBMERSION WITH TOTALLY GEODESIC FIBERS
- Mathematics
- 2022
. In this paper, we investigate submersions f : S 3 → S 2 with totally geodesic fibers. We prove that f is harmonic if and only its Gauss map is a harmonic unit vector field. This result can be viewed…
References
SHOWING 1-10 OF 47 REFERENCES
MINIMAL GRAPHS IN R WITH BOUNDED JACOBIANS
- Mathematics
- 2012
In this paper we obtain a Bernstein type result for entire two dimensional minimal graphs in R, which extends a previous one due to L. Ni. Moreover, we provide a characterization for complex analytic…
Bernstein type theorems with flat normal bundle
- Mathematics
- 2006
We prove Bernstein type theorems for minimal n-submanifolds in ℝn+p with flat normal bundle. Those are natural generalizations of the corresponding results of Ecker-Huisken and Schoen-Simon-Yau for…
Mean curvature flow of the graphs of maps between compact manifolds
- Mathematics
- 2011
We make several improvements on the results of M.-T. Wang (2002) and his joint paper with M.-P. Tsui (2004) concerning the long time existence and convergence for solutions of mean curvature flow in…
On graphic Bernstein type results in higher codimension
- Mathematics
- 2002
Let E be a minimal submanifold of R n+m that can be represented as the graph of a smooth map f: R n → R m . We apply a formula that we derived in the study of mean curvature flow to obtain conditions…
The regularity of harmonic maps into spheres and applications to Bernstein problems
- Mathematics
- 2009
We show the regularity of, and derive a-priori estimates for (weakly) harmonic maps from a Riemannian manifold into a Euclidean sphere under the assumption that the image avoids some neighborhood of…
Mean curvature flows and isotopy of maps between spheres
- Mathematics
- 2003
Let f be a smooth map between unit spheres of possibly different dimensions. We prove the global existence and convergence of the mean curvature flow of the graph of f under various conditions. A…
Mean Curvature Flows of Lagrangian Submanifolds with Convex Potentials
- Mathematics
- 2002
This article studies the mean curvature flow of Lagrangian submanifolds. In particular, we prove the following global existence and convergence theorem: if the potential function of a Lagrangian…
The Ricci Flow in Riemannian Geometry
- Mathematics
- 2011
This book focuses on Hamilton’s Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness…
Long-time existence and convergence of graphic mean curvature flow in arbitrary codimension
- Mathematics
- 2002
Abstract.Let f:Σ1↦Σ2 be a map between compact Riemannian manifolds of constant curvature. This article considers the evolution of the graph of f in Σ1×Σ2 by the mean curvature flow. Under suitable…