Bayesian classification and unsupervised learning for isolating weeds in row crops

@article{Rainville2012BayesianCA,
  title={Bayesian classification and unsupervised learning for isolating weeds in row crops},
  author={François-Michel De Rainville and Audrey Durand and F{\'e}lix-Antoine Fortin and Kevin Tanguy and Xavier Maldague and Bernard Panneton and Marie-Jos{\'e}e Simard},
  journal={Pattern Analysis and Applications},
  year={2012},
  volume={17},
  pages={401-414}
}
This paper presents a weed/crop classification method using computer vision and morphological analysis. Subsequent supervised and unsupervised learning methods are applied to extract dominant morphological characteristics of weeds present in corn and soybean fields. The novelty of the presented technique resides in the feature extraction process that is based on spatial localization of vegetation in fields. Features from the weed leaf area distribution are extracted from the cultivation inter… CONTINUE READING

Citations

Publications citing this paper.
Showing 1-10 of 14 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 26 references

Initiative des stratégies de réduction des risques liés aux pesticides

  • B Panneton
  • Rapport annuel PRR07–10, Centre pour la lutte…
  • 2009
Highly Influential
4 Excerpts

Colour representation methods for segmentation of vegetation in photographs

  • B Panneton, M Brouillard
  • Biosyst Eng
  • 2009
Highly Influential
2 Excerpts

Mise au point et impact sur la distribution spatiotemporelle des adventices d ’ un système d ’ aide ála décision pour l ’ application des herbicides en maı̈ssoya

  • MJ PannetonB.Simard, GD Leroux, A Légére
  • 2010

Assessment of an inter-row weed infestation rate on simulated agronomic images. Computers and Electronics in Agriculture

  • G Jones, C Gée, F Truchetet
  • 2009
1 Excerpt

Assessment of an interrow weed infestation rate on simulated agronomic images

  • G. Jones, C. Gée, F Truchetet
  • Computers and Electronics in Agriculture
  • 2009

Similar Papers

Loading similar papers…