Corpus ID: 218610959

Bayesian Beta-Binomial Prevalence Estimation Using an Imperfect Test

@article{Baxter2020BayesianBP,
  title={Bayesian Beta-Binomial Prevalence Estimation Using an Imperfect Test},
  author={J. Baxter},
  journal={arXiv: Applications},
  year={2020}
}
  • J. Baxter
  • Published 2020
  • Mathematics
  • arXiv: Applications
  • Following [Diggle 2011, Greenland 1995], we give a simple formula for the Bayesian posterior density of a prevalence parameter based on unreliable testing of a population. This problem is of particular importance when the false positive test rate is close to the prevalence in the population being tested. An efficient Monte Carlo algorithm for approximating the posterior density is presented, and applied to estimating the Covid-19 infection rate in Santa Clara county, CA using the data reported… CONTINUE READING

    Figures from this paper.

    References

    SHOWING 1-4 OF 4 REFERENCES
    Estimating Prevalence Using an Imperfect Test
    • 53
    • Highly Influential
    • PDF
    COVID-19 Antibody Seroprevalence in Santa Clara County, California
    • 280
    • Highly Influential
    • PDF
    Basic methods for sensitivity analysis of biases.
    • S. Greenland
    • Medicine
    • International journal of epidemiology
    • 1996
    • 423
    • Highly Influential
    • PDF
    A note on the delta method
    • 1,073