Baron Münchhausen Redeems Himself: Bounds for a Coin-Weighing Puzzle

@article{Khovanova2011BaronMR,
  title={Baron M{\"u}nchhausen Redeems Himself: Bounds for a Coin-Weighing Puzzle},
  author={T. Khovanova and J. Lewis},
  journal={Electron. J. Comb.},
  year={2011},
  volume={18}
}
  • T. Khovanova, J. Lewis
  • Published 2011
  • Mathematics, Computer Science
  • Electron. J. Comb.
  • We investigate a coin-weighing puzzle that appeared in the 1991 Moscow Math Olympiad. We generalize the puzzle by varying the number of participating coins, and deduce an upper bound on the number of weighings needed to solve the puzzle that is noticeably better than the trivial upper bound. In particular, we show that logarithmically-many weighings on a balance suffice. 
    3 Citations
    Lower bounds on the Münchhausen problem
    • M. Brand
    • Mathematics, Computer Science
    • Australas. J Comb.
    • 2014
    • PDF
    Münchhausen Matrices
    • M. Brand
    • Computer Science
    • Electron. J. Comb.
    • 2012
    • 1
    • Highly Influenced
    Tightening the bounds on the Baron's Omni-sequence
    • M. Brand
    • Mathematics, Computer Science
    • Discret. Math.
    • 2012
    • 3

    References

    SHOWING 1-8 OF 8 REFERENCES
    Baron Munchhausen's Sequence
    • 2
    • PDF
    Representations of Integers as Sums of Squares
    • 157
    Coins Sequence, http://blog.tanyakhovanova.com/?p=148
    • Coins Sequence, http://blog.tanyakhovanova.com/?p=148
    • 2009
    XXVI All-Russian Mathematical Olympiad, Kvant, 2000, issue 5, pp. 49-53 (in Russian), or at http://kvant.mccme.ru/pdf/2000/05/49.pdf the electronic journal of combinatorics
    • 2011
    XXVI All-Russian Mathematical Olympiad
    • Kvant
    • 2000
    REPRESENTATIONS OF INTEGERS AS SUMS OF SQUARES
    • 17
    The adventures of Baron Munchausen
    • 8
    Online Encyclopedia of Integer Sequences (OEIS)
    • Online Encyclopedia of Integer Sequences (OEIS)