Backward stability of polynomial root-finding using Fiedler companion matrices

@inproceedings{ROILN2014BackwardSO,
  title={Backward stability of polynomial root-finding using Fiedler companion matrices},
  author={ROIL{\'A}N and M. D and OPICO and AVIER and Erez and DE EPARTAMENTO and ATEM{\'A}TICAS},
  year={2014}
}
  • ROILÁN, D M., +4 authors ATEMÁTICAS
  • Published 2014
Computing roots of scalar polynomials as the eigenvalues of Frobenius companion matrices using backward stable eigenvalue algorithms is a classical approach. The introduction of new families of companion matrices allows for the use of other matrices in the root-finding problem. In this paper, we analyze the backward stability of polynomial root-finding algorithms via Fiedler companion matrices. In other words, given a polynomial p(z), the question is to determine whether the whole set of… CONTINUE READING
7 Citations
35 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 35 references

Technical report on backward stability of polynomial root-finding using Fiedler companion matrices. MIMS EPrint 2014.38

  • F. DE TERÁN, F. M. DOPICO, J. PÉREZ
  • 2014
Highly Influential
12 Excerpts

Matrices depending on parameters

  • V. I. ARNOLD
  • Uspehi Mat. Nauk,
  • 1971
Highly Influential
4 Excerpts

The theory of matrices. Vols

  • F. R. GANTMACHER
  • Chelsea Publishing Co.,
  • 1959
Highly Influential
3 Excerpts

Matrix mathematics. Theory, facts, and formulas, 2nd edn

  • D. S. BERNSTEIN
  • 2009
Highly Influential
2 Excerpts

Similar Papers

Loading similar papers…