BRUCK NETS AND PARTIAL SHERK PLANES

@article{Bamberg2016BRUCKNA,
  title={BRUCK NETS AND PARTIAL SHERK PLANES},
  author={John Bamberg and Joanna B. Fawcett and Jesse Lansdown},
  journal={Journal of the Australian Mathematical Society},
  year={2016},
  volume={104},
  pages={1 - 12}
}
In Bachmann [Aufbau der Geometrie aus dem Spiegelungsbegriff, Die Grundlehren der mathematischen Wissenschaften, Bd. XCVI (Springer, Berlin–Göttingen–Heidelberg, 1959)], it was shown that a finite metric plane is a Desarguesian affine plane of odd order equipped with a perpendicularity relation on lines and that the converse is also true. Sherk [‘Finite incidence structures with orthogonality’, Canad. J. Math. 19 (1967), 1078–1083] generalised this result to characterise the finite affine… 

References

SHOWING 1-6 OF 6 REFERENCES

Finite Incidence Structures with Orthogonality

  • F. A. Sherk
  • Mathematics
    Canadian Journal of Mathematics
  • 1967
An incidence structure consists of two sets of elements, called points and blocks, together with a relation, called incidence, between elements of the two sets. Well-known examples are inversive

Polarities in finite projective planes

Introduction. If w is a finite projective plane, then every line in T carries the same number n+1 of points and through every point there pass n+1 lines. The total number of points (lines) in w is

Aufbau der Geometrie aus dem Spiegelungsbegriff

torischen Gruppenelemente sind und in den en wir geometrische Bezie hungen wie Inzidenz undOrthogonalitat durch gruppentheoretische Rela tionen erklaren. Die rein gruppentheoretisch formulierten

Finite geometries

Unimbeddable nets of small deficiency.

Finite nets. II. Uniqueness and imbedding.