BEST PROXIMITY POINT THEOREMS FOR NON-SELF MAPPINGS

@inproceedings{Sankar2013BESTPP,
  title={BEST PROXIMITY POINT THEOREMS FOR NON-SELF MAPPINGS},
  author={Vidhya Sankar},
  year={2013}
}
Let us consider a pair (A, B) of nonempty subsets of a metric space X and a mapping T : A → B. In this article, we introduced a notion called P−property and used it to prove sufficient conditions for the existence of a point x0 ∈ A, called best proximity point, satisfying d(x0, Tx0) = dist(A, B) := inf{d(a, b) : a ∈ A, b ∈ B}. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 15 references

Extensions of Banach’s contraction principle, Numer

  • S. Sadiq Basha
  • Funct. Anal. Optim., 31(),
  • 2010
Highly Influential
3 Excerpts

Fixed points for mappings satisfying cyclic contractive conditions

  • W. A. Kirk, P. S. Srinivasan, P. Veeramani
  • Fixed Point Theory, 4(),
  • 2003
Highly Influential
2 Excerpts

A note on existence and convergence of best proximity points for pointwise cyclic contractions

  • G. Sankara Raju Kosuru, P. Veeramani
  • Numer. Funct. Anal. Optim.,
  • 2011

On common best proximity pair theorems

  • A. Anthony Eldred, V. Sankar Raj
  • Acta Sci. Math. Szeged,
  • 2011
2 Excerpts

A note on existence and convergence of best proximity points for pointwise cyclic contractions , Numer

  • G. Sankara Raju Kosuru, P. Veeramani
  • . Funct . Anal . Optim .
  • 2010

Convergence and existence results for best proximity points

  • M. A. Al-Thagafi, N. Shahzad
  • Nonlinear Anal.,
  • 2009