# Avoiding coherent errors with rotated concatenated stabilizer codes

@article{Ouyang2020AvoidingCE, title={Avoiding coherent errors with rotated concatenated stabilizer codes}, author={Yingkai Ouyang}, journal={npj Quantum Information}, year={2020}, volume={7}, pages={1-7} }

Coherent errors, which arise from collective couplings, are a dominant form of noise in many realistic quantum systems, and are more damaging than oft considered stochastic errors. Here, we propose integrating stabilizer codes with constant-excitation codes by code concatenation. Namely, by concatenating an [[ n , k , d ]] stabilizer outer code with dual-rail inner codes, we obtain a [[2 n , k , d ]] constant-excitation code immune from coherent phase errors and also equivalent to a Pauli…

## 4 Citations

Optimizing Stabilizer Parities for Improved Logical Qubit Memories.

- PhysicsPhysical review letters
- 2021

Even-distance versions of Shor-code variants are decoherence-free subspaces and fully robust to identical and independent coherent idling noise, and a factor of 3.78±1.20 improvement of the logical T2^{*} in a distance-3 logical qubit implemented on a trapped-ion quantum computer is demonstrated.

Effect of quantum error correction on detection-induced coherent errors

- PhysicsPhysical Review A
- 2022

We study the performance of quantum error correction codes(QECCs) under the detection-induced coherent error due to the imperfectness of practical implementations of stabilizer measurements, after…

Divisible Codes for Quantum Computation

- Computer ScienceArXiv
- 2022

This paper explores how divisible codes can be used to protect quantum information as it is transformed by logical gates, and provides a simple alternative to the standard method of deriving the coset weight distributions (based on Dickson normal form) that may be of independent interest.

Mitigating Coherent Noise by Balancing Weight-2 Z-Stabilizers

- MathematicsIEEE Transactions on Information Theory
- 2022

This paper considers a form of coherent Z-errors and constructs stabilizer codes that form DFS for such noise ("Z-DFS") and develops conditions for transversal $\exp(\imath \theta Z)$ to preserve a stabilizer code subspace for all $\theta$ if the code is error-detecting, which implies a trivial action on the logical qubits.

## References

SHOWING 1-10 OF 50 REFERENCES

Permutation-Invariant Constant-Excitation Quantum Codes for Amplitude Damping

- Physics, Computer ScienceIEEE Transactions on Information Theory
- 2020

The purpose of this paper is to give constant-excitation quantum codes that not only correct amplitude damping errors, but are also immune against permutations of their underlying modes.

High Performance Single-Error-Correcting Quantum Codes for Amplitude Damping

- Computer ScienceIEEE Transactions on Information Theory
- 2011

These codes are nonadditive and most modestly outperform the best possible additive codes in terms of encoded dimension and are of the codeword stabilized (CWS) type, conceptually simple encoding and decoding circuits are available.

Detected-jump-error-correcting quantum codes, quantum error designs, and quantum computation

- Computer Science
- 2002

The construction of a family of one detected jump-error correcting quantumcodes is shown and the optimal redundancy, encoding and recovery as well as general properties ofdetected jump- error correcting quantum codes are discussed.

Stabilizer Slicing: Coherent Error Cancellations in Low-Density Parity-Check Stabilizer Codes.

- PhysicsPhysical review letters
- 2018

This Letter demonstrates that coherent noise is preferable to stochastic noise within certain code and gate implementations when the coherence is utilized effectively.

Optimal and efficient decoding of concatenated quantum block codes

- Computer Science
- 2006

These Monte Carlo results using the five-qubit and Steane's code on a depolarizing channel demonstrate significant advantages of the message-passing algorithms in two respects: Optimal decoding increases by as much as 94% the error threshold below which the error correction procedure can be used to reliably send information over a noisy channel.

Theory of quantum error-correcting codes

- Computer Science
- 1997

A general theory of quantum error correction based on encoding states into larger Hilbert spaces subject to known interactions is developed and necessary and sufficient conditions for the perfect recovery of an encoded state after its degradation by an interaction are obtained.

Quantum Error Correction Via Codes Over GF(4)

- Computer Science, PhysicsIEEE Trans. Inf. Theory
- 1998

In the present paper the problem of finding quantum-error-correcting codes is transformed into one of finding additive codes over the field GF(4) which are self-orthogonal with respect to a certain trace inner product.

Bosonic quantum codes for amplitude damping

- Physics, Computer Science
- 1997

This work demonstrates alternative codes that correct just amplitude damping errors that allow, for example, a $t=1$, $k=1$ code using effectively $n=4.6$.

Approximate quantum error correction can lead to better codes

- Computer Science
- 1997

We present relaxed criteria for quantum error correction that are useful when the specific dominant quantum noise process is known. As an example, we provide a four-bit code that corrects for a…