Automorphisms of Extremal Self-Dual Codes


Let <i>C</i> be a binary extremal self-dual code of length <i>n</i> ¿ 48. We prove that for each <i>¿ ¿ Aut(C</i>) of prime order <i>p</i> ¿ 5 the number of fixed points in the permutation action on the coordinate positions is bounded by the number of <i>p</i>-cycles. It turns out that large primes <i>p</i>, i.e., <i>n</i>-<i>p</i> small, seem to occur in… (More)
DOI: 10.1109/TIT.2010.2043763


2 Figures and Tables

Slides referencing similar topics