AutomationML review support in multi-disciplinary engineering environments

@article{Winkler2016AutomationMLRS,
  title={AutomationML review support in multi-disciplinary engineering environments},
  author={Dietmar Winkler and Fajar J. Ekaputra and Stefan Biffl},
  journal={2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)},
  year={2016},
  pages={1-9}
}
[Context] In Multi-Disciplinary Engineering (MDE) environments, the engineering of industrial production systems requires the collaboration of engineers coming from different disciplines. Engineers typically apply discipline specific tools and data models with limited collaboration capabilities. These loosely coupled tools and heterogeneous data models hinder efficient change management and defect detection, which makes MDE projects unnecessarily risky and error prone. [Objective] This paper… CONTINUE READING

References

Publications referenced by this paper.
SHOWING 1-10 OF 31 REFERENCES

Focused Inspections to Support Defect Detection in Multi-Disciplinary Engineering Environments

  • D. Winkler, S. Biffl
  • Research Preview Paper, In: Proceedings of the…
  • 2015
Highly Influential
3 Excerpts

Eds.): “Semantic Web for Intelligent Engineering Applications”, Springer, 2016 (upcoming)

  • S. Biffl, M. Sabou
  • 2016
1 Excerpt

Handbuch Industrie 4.0“, ISBN: 978-3-662-45537-1

  • B. Vogel-Heuser, T. Bauernhansl, M. ten Tompel
  • 2016
1 Excerpt

Meet EGerrit“, online available at http://eclipsesource.com/blogs/2015/08/03/meet-egerrit/, access

  • M. Koegel, J. Helming
  • 2016
2 Excerpts

Integration von heterogenen Engineering Daten mit AutomationML und dem AML.hub: Konsistente Daten über Fachbereichsgrenzen hinweg

  • D. Winkler, S. Biffl, H. Steininger
  • 2015
2 Excerpts

Similar Papers

Loading similar papers…