Automatic Parameter Selection by Minimizing Estimated Error

@inproceedings{Kohavi1995AutomaticPS,
  title={Automatic Parameter Selection by Minimizing Estimated Error},
  author={Ron Kohavi and George H. John},
  booktitle={ICML},
  year={1995}
}
We address the problem of finding the parameter settings that will result in optimal performance of a given learning algorithm using a particular dataset as training data. We describe a “wrapper” method, considering determination of the best parameters as a discrete function optimization problem. The method uses best-first search and crossvalidation to wrap around the basic induction algorithm: the search explores the space of parameter values, running the basic algorithm many times on training… CONTINUE READING
BETA

Figures, Tables, Results, and Topics from this paper.

Similar Papers

Citations

Publications citing this paper.
SHOWING 1-10 OF 86 CITATIONS

OPTIMIZING PARAMETERS OF MACHINE LEARNING ALGORITHMS

VIEW 4 EXCERPTS
CITES BACKGROUND
HIGHLY INFLUENCED

Data Mining Using MLC a Machine Learning Library in C++

  • International Journal on Artificial Intelligence Tools
  • 1996
VIEW 15 EXCERPTS
CITES METHODS & BACKGROUND
HIGHLY INFLUENCED

Chapter 1 Hyperparameter Optimization

VIEW 3 EXCERPTS
CITES BACKGROUND & METHODS

Which Surrogate Works for Empirical Performance Modelling? A Case Study with Differential Evolution

  • 2019 IEEE Congress on Evolutionary Computation (CEC)
  • 2019
VIEW 1 EXCERPT
CITES BACKGROUND

Parameter Selection for Linear Support Vector Regression

Jui-Yang Hsia, Chih-Jen Lin
  • 2018
VIEW 2 EXCERPTS
CITES BACKGROUND

FILTER CITATIONS BY YEAR

1995
2019

CITATION STATISTICS

  • 2 Highly Influenced Citations

References

Publications referenced by this paper.
SHOWING 1-10 OF 20 REFERENCES

1994a), \Ljubljana breast

M. Zwitter, M. Soklic
  • 1994
VIEW 1 EXCERPT

Char - acterizing the applicability of classi cation algorithms using metalevel learning

P. ReferencesBrazdil, J. Gama, B. Henery
  • 1994

E  cient algorithms forminimizing cross - validation error

A. W. Moore, D. J. Hill, M. P. Johnson
  • 1994