Corpus ID: 236469267

Automated Human Cell Classification in Sparse Datasets using Few-Shot Learning

@article{Walsh2021AutomatedHC,
  title={Automated Human Cell Classification in Sparse Datasets using Few-Shot Learning},
  author={Reece Walsh and Mohamed H. Abdelpakey and Mohamed S. Shehata and Mostafa M. Mohamed},
  journal={ArXiv},
  year={2021},
  volume={abs/2107.13093}
}
Classifying and analyzing human cells is a lengthy procedure, often involving a trained professional. In an attempt to expedite this process, an active area of research involves automating cell classification through use of deep learning-based techniques. In practice, a large amount of data is required to accurately train these deep learning models. However, due to the sparse human cell datasets currently available, the performance of these models is typically low. This study investigates the… Expand

Figures and Tables from this paper

References

SHOWING 1-10 OF 34 REFERENCES
Siamese Neural Networks for One-Shot Image Recognition
TLDR
A method for learning siamese neural networks which employ a unique structure to naturally rank similarity between inputs and is able to achieve strong results which exceed those of other deep learning models with near state-of-the-art performance on one-shot classification tasks. Expand
TAFSSL: Task-Adaptive Feature Sub-Space Learning for few-shot classification
TLDR
It is shown that on the challenging miniImageNet and tieredImageNet benchmarks, TAFSSL can improve the current state-of-the-art in both transductive and semi-supervised FSL settings by more than $5\%$, while increasing the benefit of using unlabeled data in FSL to above $10\%$ performance gain. Expand
ImageNet classification with deep convolutional neural networks
TLDR
A large, deep convolutional neural network was trained to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes and employed a recently developed regularization method called "dropout" that proved to be very effective. Expand
Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples
TLDR
This work proposes Meta-Dataset: a new benchmark for training and evaluating models that is large-scale, consists of diverse datasets, and presents more realistic tasks, and proposes a new set of baselines for quantifying the benefit of meta-learning in Meta- Dataset. Expand
Rethinking the Inception Architecture for Computer Vision
TLDR
This work is exploring ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization. Expand
Matching Networks for One Shot Learning
TLDR
This work employs ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories to learn a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. Expand
Charting the Right Manifold: Manifold Mixup for Few-shot Learning
TLDR
This work observes that regularizing the feature manifold, enriched via self-supervised techniques, with Manifold Mixup significantly improves few-shot learning performance, and proposes the proposed method S2M2, which beats the current state-of-the-art accuracy on standard few- shot learning datasets. Expand
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learningExpand
Prototypical Networks for Few-shot Learning
TLDR
This work proposes Prototypical Networks for few-shot classification, and provides an analysis showing that some simple design decisions can yield substantial improvements over recent approaches involving complicated architectural choices and meta-learning. Expand
Deep Residual Learning for Image Recognition
TLDR
This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. Expand
...
1
2
3
4
...