Attenuation of lower-thoracic, lumbar, and sacral spinal cord motion: implications for imaging human spinal cord structure and function.

Abstract

BACKGROUND AND PURPOSE Recent literature indicates that cervical and upper-thoracic spinal cord motion adversely affect both structural and functional MR imaging (fMRI; particularly diffusion tensor imaging [DTI] and spinal fMRI), ultimately reducing the reliability of these methods for both research and clinical applications. In the present study, we investigated motion of the lower-thoracic, lumbar, and sacral cord segments to evaluate the incidence of similar motion-related confounds in these regions. MATERIALS AND METHODS Recently developed methods, used previously for measuring cervical and upper-thoracic spinal cord motion, were employed in the present study to examine anteroposterior (A/P) and left-right (L/R) spinal cord motion in caudal regions. Segmented cinematic imaging was applied with a gradient-echo, turbo fast low-angle shot (turbo-FLASH) pulse sequence to acquire midline images of the cord at 24 cardiac phases throughout the lower-thoracic, lumbar, and sacral spinal cord regions. RESULTS The magnitude of A/P motion was found to be largest in rostral cord regions, whereas in caudal regions (at the level of the T4/T5 vertebrae and below), peak cord motion was uniformly small (routinely < or =0.10 mm). L/R motion, however, was found to be minimal throughout the thoracic, lumbar, and sacral regions. CONCLUSION Motion-related errors in spinal fMRI and DTI are expected to be significantly reduced throughout caudal regions of the spinal cord, thus yielding higher sensitivity and specificity compared with rostral regions. The paucity of such errors is expected to provide a means of observing the specific impact of motion (in rostral regions) and to enable the acquisition of uncorrupted DTI and fMRI data for studies of structure and function throughout lumbar and sacral regions.

DOI: 10.3174/ajnr.A1154

4 Figures and Tables

Statistics

05010020102011201220132014201520162017
Citations per Year

75 Citations

Semantic Scholar estimates that this publication has 75 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Figley2008AttenuationOL, title={Attenuation of lower-thoracic, lumbar, and sacral spinal cord motion: implications for imaging human spinal cord structure and function.}, author={Chase R. Figley and Diana Yau and Patrick W. Stroman}, journal={AJNR. American journal of neuroradiology}, year={2008}, volume={29 8}, pages={1450-4} }