# Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions

@article{Combettes2018AsynchronousBP, title={Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions}, author={Patrick L. Combettes and Jonathan Eckstein}, journal={Mathematical Programming}, year={2018}, volume={168}, pages={645-672} }

We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in established methods. Flexible strategies are used to select the blocks of operators activated at each iteration. In addition, we allow…

## 64 Citations

Weak convergence of an extended splitting method for monotone inclusions

- MathematicsJ. Glob. Optim.
- 2021

In this article, we consider the problem of finding zeros of monotone inclusions of three operators in real Hilbert spaces, where the first operator’s inverse is strongly monotone and the third is…

A new splitting method for monotone inclusions of three operators

- MathematicsCalcolo
- 2018

In this article, we consider monotone inclusions in real Hilbert spaces and suggest a new splitting method. The associated monotone inclusions consist of the sum of one bounded linear monotone…

Primal-Dual Splitting Algorithms for Solving Structured Monotone Inclusion with Applications

- Mathematics, Computer ScienceSymmetry
- 2021

This work proposes two different primal-dual splitting algorithms for solving structured Monotone inclusion containing a cocoercive operator and the parallel-sum of maximally monotone operators, which have a simple calculation framework.

Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs

- Computer ScienceComput. Optim. Appl.
- 2019

This paper proposes an async-parallel method based on block coordinate update (BCU) for solving convex problems with nonseparable linear constraint and establishes an ergodic O(1 / k) convergence result, where k is the number of iterations.

Convergence Rates for Projective Splitting

- MathematicsSIAM J. Optim.
- 2019

Strong convergence is established as well as an ergodic $O(1/\sqrt{k})$ convergence rate for the distance of the iterates to the solution for inclusions featuring strong monotonicity and cocoercivity.

A Simplified Form of Block-Iterative Operator Splitting and an Asynchronous Algorithm Resembling the Multi-Block Alternating Direction Method of Multipliers

- Computer Science, MathematicsJ. Optim. Theory Appl.
- 2017

This paper develops what is essentially a simplified version of the block-iterative operator splitting method already proposed by the author and P. Combettes, but with more general initialization…

Asynchronous parallel primal-dual block update methods

- Computer ScienceArXiv
- 2017

This paper proposes an async-parallel method based on block coordinate update (BCU) for solving convex problems with nonseparable linear constraint and establishes an ergodic $O(1/k)$ convergence result, where $k$ is the number of iterations.

A New Randomized Primal-Dual Algorithm for Convex Optimization with Optimal Last Iterate Rates

- Computer Science, Mathematics
- 2020

We develop a novel unified randomized block-coordinate primal-dual algorithm to solve a class of nonsmooth constrained convex optimization problems, which covers different existing variants and model…

Primal-Dual Proximal Algorithms for Structured Convex Optimization: A Unifying Framework

- Mathematics, Computer Science
- 2018

We present a simple primal-dual framework for solving structured convex optimization problems involving the sum of a Lipschitz-differentiable function and two nonsmooth proximable functions, one of…

Asynchronous Projective Hedging for Stochastic Programming ∗

- Computer Science
- 2018

This paper proposes a decomposition algorithm for multistage stochastic programming that resembles the progressive hedging method of Rockafellar and Wets, but is capable of asynchronous parallel…

## References

SHOWING 1-10 OF 26 REFERENCES

Convergence Rate Analysis of Primal-Dual Splitting Schemes

- Mathematics, Computer ScienceSIAM J. Optim.
- 2015

This paper introduces a unifying scheme and uses some abstract analysis of the algorithm to prove convergence rates of the proximal point algorithm, forward-backward splitting, Peaceman--Rachford splitting, and forward- backward-forward splitting applied to the model problem.

SOLVING SYSTEMS OF MONOTONE INCLUSIONS VIA PRIMAL-DUAL SPLITTING TECHNIQUES

- Mathematics
- 2013

In this paper we propose an algorithm for solving systems of coupled monotone inclusions in Hilbert spaces. The operators arising in each of the inclusions of the system are processed in each…

Systems of Structured Monotone Inclusions: Duality, Algorithms, and Applications

- MathematicsSIAM J. Optim.
- 2013

A general primal-dual splitting algorithm for solving systems of structured coupled monotone inclusions in Hilbert spaces is introduced and its asymptotic behavior is analyzed, providing a flexible solution method applicable to a variety of problems beyond the reach of the state-of-the-art.

Solving Coupled Composite Monotone Inclusions by Successive Fejér Approximations of their Kuhn-Tucker Set

- Mathematics, Computer ScienceSIAM J. Optim.
- 2014

A new class of primal-dual Fejermonotone algorithms for solving systems of composite monotone inclusions that do not require prior knowledge of bounds on the linear operators involved or the inversion of linear operators.

A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality

- MathematicsSIAM J. Optim.
- 2011

The principle underlying this paper is the basic observation that the problem of simultaneously solving a large class of composite monotone inclusions and their duals can be reduced to that of…

A family of projective splitting methods for the sum of two maximal monotone operators

- MathematicsMath. Program.
- 2008

The projective algorithms converge under more general conditions than prior splitting methods, allowing the proximal parameter to vary from iteration to iteration, and even from operator to operator, while retaining convergence for essentially arbitrary pairs of operators.

Forward–Partial Inverse–Forward Splitting for Solving Monotone Inclusions

- MathematicsJ. Optim. Theory Appl.
- 2015

A fully split algorithm for finding a zero of the sum of a maximally monotone operator, a Lipschitzian monot one operator, and a normal cone to a closed vector subspace of a real Hilbert space is provided.

A Class of Randomized Primal-Dual Algorithms for Distributed Optimization

- Computer Science, Mathematics
- 2014

The proposed approach can be used to develop novel asynchronous distributed primal-dual algorithms in a multi-agent context and may be useful for reducing computational complexity and memory requirements.

Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations with Random Sweeping

- MathematicsSIAM J. Optim.
- 2015

This work proposes block-coordinate fixed point algorithms with applications to nonlinear analysis and optimization in Hilbert spaces and relies on a notion of stochastic quasi-Fejer monotonicity for its asymptotic analysis.

On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems

- Mathematics, Computer ScienceMath. Program.
- 2015

Two modified versions of the primal-dual splitting algorithm relying on forward–backward splitting proposed in V (Adv Comput Math 38(3):667–681, 2013) for solving monotone inclusion problems are presented.