# Asymptotic exponents from low-Reynolds-number flows

@article{Schumacher2006AsymptoticEF, title={Asymptotic exponents from low-Reynolds-number flows}, author={J{\"o}rg Schumacher and Katepalli R. Sreenivasan and Victor Yakhot}, journal={New Journal of Physics}, year={2006}, volume={9}, pages={89 - 89} }

The high-order statistics of fluctuations in velocity gradients in the crossover range from the inertial to the Kolmogorov and sub-Kolmogorov scales are studied by direct numerical simulations (DNS) of homogeneous isotropic turbulence with vastly improved resolution. The derivative moments for orders 0 ⩽ n ⩽ 8 are represented well as powers of the Reynolds number, Re, in the range 380 ⩽ Re ⩽ 5275, where Re is based on the periodic box length Lx. These low-Reynolds-number flows give no hint of…

## Figures and Tables from this paper

## 115 Citations

On the universality of local dissipation scales in turbulent channel flow

- PhysicsJournal of Fluid Mechanics
- 2015

Well-resolved measurements of the small-scale dissipation statistics within turbulent channel flow are reported for a range of Reynolds numbers from $Re_{{\it\tau}}\approx 500$ to 4000. In this flow,…

Scaling exponents saturate in three-dimensional isotropic turbulence

- Physics
- 2020

From a database of direct numerical simulations of homogeneous and isotropic turbulence, generated in periodic boxes of various sizes, we extract the spherically symmetric part of moments of velocity…

Scaling in Decaying Turbulence at High Reynolds Numbers

- Physics
- 2020

The way the increment statistics of turbulent velocity fluctuations scale with the increment size is a centerpiece of turbulence theories. We report data on decaying turbulence in the Max Planck…

Local dissipation scales in two-dimensional Rayleigh-Taylor turbulence.

- PhysicsPhysical review. E, Statistical, nonlinear, and soft matter physics
- 2014

The results reveal that the present measured Q(η) agrees with those previously observed in homogeneous isotropic turbulence and in turbulent pipe flows, at least for the smallest scales around the classical Kolmogorov dissipation scale.

Dissipation-range fluid turbulence and thermal noise.

- PhysicsPhysical review. E
- 2022

We revisit the issue of whether thermal fluctuations are relevant for incompressible fluid turbulence and estimate the scale at which they become important. As anticipated by Betchov in a prescient…

Extreme velocity gradients in turbulent flows

- PhysicsNew Journal of Physics
- 2019

Fully turbulent flows are characterized by intermittent formation of very localized and intense velocity gradients. These gradients can be orders of magnitude larger than their typical value and lead…

Inertial range Eulerian and Lagrangian statistics from numerical simulations of isotropic turbulence

- PhysicsJournal of Fluid Mechanics
- 2010

We present a study of Eulerian and Lagrangian statistics from a high-resolution numerical simulation of isotropic and homogeneous turbulence using the FLASH code, with an estimated Taylor microscale…

Oscillations modulating power law exponents in isotropic turbulence: Where experiments and simulations agree and differ

- Physics
- 2020

Inertial-range features of turbulence are investigated using data from experimental measurements of grid turbulence and direct numerical simulations of isotropic turbulence simulated in a periodic…

Reynolds number of transition and self-organized criticality of strong turbulence.

- PhysicsPhysical review. E, Statistical, nonlinear, and soft matter physics
- 2014

It is shown that in the infrared limit k→Λf, the Reynolds numbers Re(k)→Retr, where Retr is the recently numerically and experimentally discovered universal Reynolds number of "smooth" transition from Gaussian to anomalous statistics of spatial velocity derivatives, sum up to zero.

## References

SHOWING 1-10 OF 29 REFERENCES

Anomalous scaling of low-order structure functions of turbulent velocity

- PhysicsJournal of Fluid Mechanics
- 2005

It is now believed that the scaling exponents of moments of velocity increments are anomalous, or that the departures from Kolmogorov's (1941) self-similar scaling increase nonlinearly with the…

High-order velocity structure functions in turbulent shear flows

- PhysicsJournal of Fluid Mechanics
- 1984

Measurements are presented of the velocity structure function on the axis of a turbulent jet at Reynolds numbers Rλ ≤ 852 and in a turbulent duct flow at Rλ = 515. Moments of the structure function…

Mean-field approximation and a small parameter in turbulence theory.

- PhysicsPhysical review. E, Statistical, nonlinear, and soft matter physics
- 2001

It is shown that in the vicinity of d=d(c) the ratio of the relaxation and translation characteristic times decreases to zero, thus giving rise to a small parameter of the theory, and predicted that the single-point probability density function of transverse velocity components in developing as well as in the large-scale stabilized two-dimensional turbulence is a Gaussian.

Does deterministic chaos imply intermittency in fully developed turbulence

- Physics
- 1991

A Fourier–Weierstrass decomposition of the velocity field is introduced. The admitted number of real amplitudes is 572 or 836. They are determined numerically from the Navier–Stokes equation…

Relation between shear parameter and Reynolds number in statistically stationary turbulent shear flows

- Physics
- 2004

Studies of the relation between the shear parameter S* and the Reynolds number Re are presented for a nearly homogeneous and statistically stationary turbulent shear flow. The parametric…

On the rapid increase of intermittency in the
near-dissipation range of fully developed turbulence

- Physics
- 2005

Abstract. Intermittency, measured as $\log
\left({F(r)}/{3}\right)$, where F(r) is the flatness of velocity
increments at scale r, is found to rapidly increase as viscous
effects intensify, and…

Dynamical equations for high-order structure functions, and a comparison of a mean-field theory with experiments in three-dimensional turbulence.

- PhysicsPhysical review. E, Statistical, nonlinear, and soft matter physics
- 2001

Comparison between the theory and the data shows varying levels of agreement, and reveals gaps inherent to the implementation of the theory, as well as on other aspects predicted by the theory.

Role of Pressure in Turbulence

- Physics
- 2003

There is very limited knowledge of the kinematical relations for the velocity structure functions higher than three. Instead, the dynamical equations for the structure functions of the velocity…

Some specific features of atmospheric turbulence

- Physics, Environmental Science
- 1962

The specific features of atmospheric turbulence can hardly be observed in the laboratory and should be studied in the atmosphere, where the range of scales of disturbances is very broad. Slow…