Associative learning in humans--conditioning of sensory-evoked brain activity.

Abstract

A classical conditioning paradigm was employed in two experiments performed on 35 human volunteers. In nine subjects, the presentation of Landolt rings (conditioned stimuli, CS + ) was paired with an electric stimulus (unconditioned stimuli, UCS) applied to the left median nerve. Neutral visual control stimuli were full circles (CS -) that were not paired with the UCS. The skin conductance response (SCR) was determined in a time interval of 5 s after onset of the visual stimuli, and it was measured in the acquisition and test phase. Associative learning was reflected by a SCR occurring selectively with CS +. The same experiment was repeated with another group of 26 adults while electroencephalogram (EEG) was recorded from 30 electrodes. For each subject, mean evoked potentials were computed. In 13 of the subjects, a conditioning paradigm was followed while the other subjects served as the control group (non-contingent stimulation). There were somatosensory and visual brain activity evoked by the stimuli. Conditioned components were identified by computing cross-correlation between evoked somatosensory components and the averaged EEG. In the visual evoked brain activity, three components with mean latencies of 105.4, 183.2, and 360.3 ms were analyzed. Somatosensory stimuli were followed by major components that occurred at mean latencies of 48.8, 132.5, 219.7, 294.8, and 374.2 ms latency after the shock. All components were analyzed in terms of latency, field strength, and topographic characteristics, and were compared between groups and experimental conditions. Both visual and somatosensory brain activity was significantly affected by classical conditioning. Our data illustrate how associative learning affects the topography of brain electrical activity elicited by presentation of conditioned visual stimuli.

Cite this paper

@article{Skrandies2000AssociativeLI, title={Associative learning in humans--conditioning of sensory-evoked brain activity.}, author={Wolfgang Skrandies and Andreas Jedynak}, journal={Behavioural brain research}, year={2000}, volume={107 1-2}, pages={1-8} }