Assessing a surrogate predictive value: a causal inference approach.

Abstract

Several methods have been developed for the evaluation of surrogate endpoints within the causal-inference and meta-analytic paradigms. In both paradigms, much effort has been made to assess the capacity of the surrogate to predict the causal treatment effect on the true endpoint. In the present work, the so-called surrogate predictive function (SPF) is introduced for that purpose, using potential outcomes. The relationship between the SPF and the individual causal association, a new metric of surrogacy recently proposed in the literature, is studied in detail. It is shown that the SPF, in conjunction with the individual causal association, can offer an appealing quantification of the surrogate predictive value. However, neither the distribution of the potential outcomes nor the SPF are identifiable from the data. These identifiability issues are tackled using a two-step procedure. In the first step, the region of the parametric space of the distribution of the potential outcomes, compatible with the data at hand, is geometrically characterized. Further, in a second step, a Monte Carlo approach is used to study the behavior of the SPF on the previous region. The method is illustrated using data from a clinical trial involving schizophrenic patients and a newly developed and user friendly R package Surrogate is provided to carry out the validation exercise. Copyright © 2016 John Wiley & Sons, Ltd.

DOI: 10.1002/sim.7197

Cite this paper

@article{Alonso2017AssessingAS, title={Assessing a surrogate predictive value: a causal inference approach.}, author={Ariel Alonso and Wim Van der Elst and Paul Meyvisch}, journal={Statistics in medicine}, year={2017}, volume={36 7}, pages={1083-1098} }