Ascorbate is a pro-oxidant in chromium-treated human lung cells.

Abstract

The human A549 lung cell line is used in this study as a model to evaluate chromium toxicity and mutagenesis since inhalation exposure of this metal gives rise to an epidemiology that indicates the lung as a target organ of chromium toxicity. Hexavalent chromium is considered the carcinogenic form of chromium, however it must be reductively activated following uptake into cells in order to react with intracellular constituents. We have previously established that the fluorescent dyes, dichlorofluorescein (DCF) and dihydrorhodamine, are effective indicators of the reductive activation of chromium and are sensitive measures of the formation of highly reactive chromium species (RCS) intracellularly. In order to examine the role of the two common intracellular reductants, glutathione and ascorbic acid (Vitamin C) in generating RCS intracellularly, we manipulated their intracellular levels through the use of buthionine sulfoximine (BSO) or by the addition of ascorbate into the culture media. We found that the high levels of glutathione in this cancer cell line lowered endogenous oxidation levels markedly, and that, by decreasing intracellular glutathione, BSO not only generated a higher background level of endogenous intracellular oxidation but the chromium-stimulated oxidation also increased markedly. Contrary to it appellation as an anti-oxidant, ascorbic acid stimulated a strong pro-oxidant response upon chromium treatment and this pro-oxidant response was evident regardless of the levels of glutathione in the cells. Based on these results, we conclude that ascorbic acid acts as a pro-oxidant in chromium-treated cells.

Statistics

020402008200920102011201220132014201520162017
Citations per Year

73 Citations

Semantic Scholar estimates that this publication has 73 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Martin2006AscorbateIA, title={Ascorbate is a pro-oxidant in chromium-treated human lung cells.}, author={Brooke D. Martin and John A. Schoenhard and J Hwang and Kent D. Sugden}, journal={Mutation research}, year={2006}, volume={610 1-2}, pages={74-84} }