Artin relations in the mapping class group

@article{Mortada2010ArtinRI,
  title={Artin relations in the mapping class group},
  author={Jamil Mortada},
  journal={Geometriae Dedicata},
  year={2010},
  volume={158},
  pages={283-300}
}
  • Jamil Mortada
  • Published 31 July 2010
  • Mathematics
  • Geometriae Dedicata
For every integer ℓ ≥ 2, we find elements x and y in the mapping class group of an appropriate orientable surface S, satisfying the Artin relation of length ℓ. That is, xyx ... = yxy ..., where each side of the equality contains ℓ terms. By direct computations, we first find elements x and y in Mod(S) satisfying Artin relations of every even length ≥ 8, and every odd length ≥ 3. Then using the theory of Artin groups, we give two more alternative ways for finding Artin relations in Mod(S). The… 

References

SHOWING 1-8 OF 8 REFERENCES
A Primer on Mapping Class Groups (Pms-49)
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many
Reflection groups and coxeter groups
Part I. Finite and Affine Reflection Groups: 1. Finite reflection groups 2. Classification of finite reflection groups 3. Polynomial invariants of finite reflection groups 4. Affine reflection groups
Groupe de monodromie géométrique des singularités simples
Cette Note tente de repondre a une question de Sullivan: le groupe fondamental du complementaire du discriminant d'un deploiement universel d'une singularite isolee en deux variables complexes
Artin-Gruppen und Coxeter-Gruppen
Man erh~ilt also die Coxeter-Gruppen in nattirlicher Weise als gewisse Restklassengruppen der Artin-Gruppen. Ftir den Fall der Z6pfegruppen ergeben sich so gerade die symmetrischen Gruppen, was
Injective maps between Artin groups
Relations in the mapping class group, in Problems on Mapping Class Groups and Related Topics, (Volume 74 of Proceedings of symposia in pure mathematics)
  • AMS Bookstore,
  • 2006
Artin - Gruppen und Coxeter - Gruppen , Invent
  • Math
  • 1972