Artificial neural networks for feature extraction and multivariate data projection

Abstract

Classical feature extraction and data projection methods have been well studied in the pattern recognition and exploratory data analysis literature. We propose a number of networks and learning algorithms which provide new or alternative tools for feature extraction and data projection. These networks include a network (SAMANN) for J.W. Sammon's (1969) nonlinear projection, a linear discriminant analysis (LDA) network, a nonlinear discriminant analysis (NDA) network, and a network for nonlinear projection (NP-SOM) based on Kohonen's self-organizing map. A common attribute of these networks is that they all employ adaptive learning algorithms which makes them suitable in some environments where the distribution of patterns in feature space changes with respect to time. The availability of these networks also facilitates hardware implementation of well-known classical feature extraction and projection approaches. Moreover, the SAMANN network offers the generalization ability of projecting new data, which is not present in the original Sammon's projection algorithm; the NDA method and NP-SOM network provide new powerful approaches for visualizing high dimensional data. We evaluate five representative neural networks for feature extraction and data projection based on a visual judgement of the two-dimensional projection maps and three quantitative criteria on eight data sets with various properties.

DOI: 10.1109/72.363467
050'97'99'01'03'05'07'09'11'13'15'17
Citations per Year

896 Citations

Semantic Scholar estimates that this publication has 896 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Mao1995ArtificialNN, title={Artificial neural networks for feature extraction and multivariate data projection}, author={Jianchang Mao and Anil K. Jain}, journal={IEEE transactions on neural networks}, year={1995}, volume={6 2}, pages={296-317} }