Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen

@article{MahlerArithmetischeED,
  title={Arithmetische Eigenschaften der L{\"o}sungen einer Klasse von Funktionalgleichungen},
  author={Kurt Mahler},
  journal={Mathematische Annalen},
  volume={101},
  pages={342-366}
}
  • K. Mahler
  • Published 1 December 1929
  • Mathematics
  • Mathematische Annalen
Algebraic independence of the generating functions of Stern’s sequence and of its twist
Very recently, the generating function A(z) of the Stern sequence (an)n≥0, defined by a0 := 0, a1 := 1, and a2n := an, a2n+1 := an + an+1 for any integer n > 0, has been considered from the
Extension of Some Theorems of W. Schwarz
  • M. Coons
  • Mathematics
    Canadian Mathematical Bulletin
  • 2012
Abstract In this paper, we prove that a non–zero power series $F(z\text{)}\in \mathbb{C}\text{ }[[z]]$ satisfying $$F({{z}^{d}})\,=\,F(z)\,+\,\frac{A(z)}{B(z)},$$ where $d\,\ge \,2,\,A(z),\,B(z)\,\in
On the rational approximation to the Thue–Morse–Mahler numbers
— Let (tk)k>0 be the Thue–Morse sequence on {0, 1} defined by t0 = 0, t2k = tk and t2k+1 = 1− tk for k > 0. Let b > 2 be an integer. We establish that the irrationality exponent of the
On numbers badly approximable by dyadic rationals
AbstractWe consider a problem originating both from circle coverings and badly approximable numbers in the case of dyadic diophantine approximation. For the unit circle $$ \mathbb{S} $$ we give an
Automates et algébricités
Dans quelle mesure la regularite des chiffres d'un nombre reel dans une base entiere, celle des quotients partiels du developpement en fraction continuee d'un nombre reel, ou celle des coefficients
Transcendence and continued fraction expansion of values of Hecke-Mahler series
Let θ and ρ be real numbers with 0 ≤ θ, ρ < 1 and θ irrational. We show that the Hecke–Mahler series Fθ,ρ(z1, z2) = ∑
of the values of certain lacunary series
  • Mathematics
  • 2020
Diophantine approximation and expansions of real numbers (Numeration and Substitution 2012)
How to describe the best rational approximations to a given real number ? Most “interest‐ ing” numbers arise as special values of some smooth function or as ((periods” of such ones, others are
Dynamics for β-shifts and Diophantine approximation
Abstract We investigate the β-expansion of an algebraic number in an algebraic base β. Using tools from Diophantine approximation, we prove several results that may suggest a strong difference
...
...