Arithmetic representations of fundamental groups, II: Finiteness
@article{Litt2021ArithmeticRO, title={Arithmetic representations of fundamental groups, II: Finiteness}, author={Daniel Litt}, journal={Duke Mathematical Journal}, year={2021} }
Let $X$ be a smooth curve over a finitely generated field $k$, and let $\ell$ be a prime different from the characteristic of $k$. We analyze the dynamics of the Galois action on the deformation rings of mod $\ell$ representations of the geometric fundamental group of $X$. Using this analysis, we prove analogues of the Shafarevich and Fontaine-Mazur finiteness conjectures for function fields over algebraically closed fields in arbitrary characteristic, and a weak variant of the Frey-Mazur…
8 Citations
Rank 2 local systems and abelian varieties
- Mathematics
- 2018
Let $X/\mathbb{F}_{q}$ be a smooth, geometrically connected, quasiprojective variety. Let $\mathcal{E}$ be a semisimple overconvergent $F$-isocrystal on $X$. Suppose that irreducible summands…
Finiteness of logarithmic crystalline representations II
- Mathematics
- 2020
Let $K$ be an unramified $p$-adic local field and let $W$ be the ring of integers of $K$. Let $(X,S)/W$ be a smooth proper scheme together with a normal crossings divisor. We show that there are only…
Density of Arithmetic Representations of Function Fields
- MathematicsÉpijournal de Géométrie Algébrique
- 2022
We propose a conjecture on the density of arithmetic points in the
deformation space of representations of the \'etale fundamental group in
positive characteristic. This? conjecture has applications…
Level structure, arithmetic representations, and noncommutative Siegel linearization
- MathematicsJournal für die reine und angewandte Mathematik (Crelles Journal)
- 2022
Abstract Let ℓ{\ell} be a prime, k a finitely generated field of characteristic different from ℓ{\ell}, and X a smooth geometrically connected curve over k. Say a semisimple representation of…
Geometrically irreducible $p$-adic local systems are de Rham up to a twist
- Mathematics
- 2020
We prove that any geometrically irreducible Qp-local system on a smooth algebraic variety over a p-adic field K becomes de Rham after a twist by a character of the Galois group of K. In particular,…
ON DELIGNE’S MONODROMY FINITENESS THEOREM (MIMUW AG SEMINAR, DEC 13, 2018)
- Mathematics
- 2018
Let S be a smooth complex algebraic variety with a base point 0. If X/S is a family of smooth projective varieties, one obtains the associated monodromy representation π1(S, 0)→ GL(H∗(X0,Q)) of the…
Finiteness of logarithmic crystalline representations
- Mathematics
- 2020
LetK be an unramified p-adic local field and letW be the ring of integers of K. Let (X, S)/W be a smooth proper scheme together with a normal crossings divisor. We show that there are only finitely…
References
SHOWING 1-10 OF 44 REFERENCES
Arithmetic representations of fundamental groups I
- MathematicsInventiones mathematicae
- 2018
Let X be a normal algebraic variety over a finitely generated field k of characteristic zero, and let $$\ell $$ℓ be a prime. Say that a continuous $$\ell $$ℓ-adic representation $$\rho $$ρ of $$\pi…
P-torsion monodromy representations of elliptic curves over geometric function fields
- Mathematics
- 2014
Given a complex quasiprojective curve $B$ and a non-isotrivial family $\mathcal{E}$ of elliptic curves over $B$, the $p$-torsion $\mathcal{E}[p]$ yields a monodromy representation…
Variations on a Theorem of Tate
- MathematicsMemoirs of the American Mathematical Society
- 2019
Let $F$ be a number field. These notes explore Galois-theoretic, automorphic, and motivic analogues and refinements of Tate's basic result that continuous projective representations $Gal(\bar{F}/F)…
Deforming Galois Representations
- Mathematics
- 1989
Given a continuous homomorphism
$${G_{Q,S}}G{L_2}\left( {{Z_p}} \right)$$
where Gℚ,S is the Galois group of the maximal algebraic extension of ℚ unramified outside the finite set S of primes of…
Generators and relations for the etale fundamental group
- Mathematics
- 2007
If $C$ is a smooth curve over an algebraically closed field $k$ of characteristic $p$, then the structure of the maximal prime to $p$ quotient of the \'etale fundamental group is known by analytic…
A conjecture on arithmetic fundamental groups
- Mathematics
- 2001
AbstractThe conjecture is the following: Over an algebraic variety over a finite field, the geometric monodromy group of every smooth
$$\overline {\mathbb{F}_\ell ((t))} $$
is finite. We indicate…
Uniform boundedness of level structures on abelian varieties over complex function fields
- Mathematics
- 2006
Let X = Ω/Γ be a smooth quotient of a bounded symmetric domain Ω by an arithmetic subgroup . We prove the following generalization of Nadel's result: for any non-negative integer g, there exists a…
The p-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings
- Mathematics
- 2008
Let G be a profinite group which is topologically finitely generated, p a prime number and d an integer. We show that the functor from rigid analytic spaces over Q_p to sets, which associates to a…
The nonexistence of certain level structures on abelian varieties over complex function fields
- Mathematics
- 1989
Let A be a principally polarized abelian variety of dimension g over a number field k. The Mordell-Weil theorem tells us that the group A(k) of k-rational points of A is finitely generated; in…
Rigidity and a Riemann–Hilbert correspondence for p-adic local systems
- Mathematics
- 2016
We construct a functor from the category of p-adic étale local systems on a smooth rigid analytic variety X over a p-adic field to the category of vector bundles with an integrable connection on its…