ArgumenText: Searching for Arguments in Heterogeneous Sources
@inproceedings{Stab2018ArgumenTextSF, title={ArgumenText: Searching for Arguments in Heterogeneous Sources}, author={Christian Stab and Johannes Daxenberger and Chris Stahlhut and Tristan Miller and B. Schiller and C. Tauchmann and Steffen Eger and Iryna Gurevych}, booktitle={NAACL-HLT}, year={2018} }
Argument mining is a core technology for enabling argument search in large corpora. However, most current approaches fall short when applied to heterogeneous texts. In this paper, we present an argument retrieval system capable of retrieving sentential arguments for any given controversial topic. By analyzing the highest-ranked results extracted from Web sources, we found that our system covers 89% of arguments found in expert-curated lists of arguments from an online debate portal, and also… CONTINUE READING
49 Citations
ArgumenText: Argument Classification and Clustering in a Generalized Search Scenario
- Computer Science
- Datenbank-Spektrum
- 2020
- PDF
Data Acquisition for Argument Search: The args.me Corpus
- Computer Science
- KI
- 2019
- 15
- Highly Influenced
- PDF
TACAM: Topic And Context Aware Argument Mining
- Computer Science, Mathematics
- 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)
- 2019
- 4
- PDF
A Systematic Comparison of Methods for Finding Good Premises for Claims
- Computer Science
- SIGIR
- 2019
- 9
- PDF
Similarity Measures for Case-Based Retrieval of Natural Language Argument Graphs in Argumentation Machines
- Computer Science
- FLAIRS Conference
- 2019
- 7
- PDF
Good Premises Retrieval via a Two-Stage Argument Retrieval Model
- Computer Science
- Grundlagen von Datenbanken
- 2019
- PDF
References
SHOWING 1-10 OF 16 REFERENCES
Cross-topic Argument Mining from Heterogeneous Sources Using Attention-based Neural Networks
- Computer Science
- ArXiv
- 2018
- 22
- PDF
Argumentation mining: the detection, classification and structure of arguments in text
- Computer Science
- ICAIL
- 2009
- 307
- PDF
A broad-coverage collection of portable NLP components for building shareable analysis pipelines
- Computer Science
- OIAF4HLT@COLING
- 2014
- 137
- PDF